
Abstract

This is a draft of the J2SE 1.5 feature list (codenamed “Tiger”)

This specification will define the target feature and API set for J2SE 1.5 The goal is that the
final release will include all the high and medium priority features from this target list, but de-
pending on implementation and API design schedules some items may be deferred to a later
release if they are unable to make the release schedule. The final specification will reflect the
final J2SE 1.5 deliverables.

J2SETM 1.5 “Tiger” Feature
List

Sun Microsystems
December 16, 2003Version 0.47(draft)

Copyright © 2003 Sun Microsystems, Inc.

J2SE 1.5, “Tiger” Release Contents

va
4. Ti-

se in-
ures.
inst the

(bug
are
nt of
ajor

ritical
va plat-

e per-

d, this
and

rs. This
1 Introduction

This specification will describe the feature and API set for the next feature release of JaTM

2 Standard Edition (J2SE) version 1.5, code named “Tiger”, targeted to ship summer 200
ger is one of a series of feature releases to J2SE.

The intention is to ship update releases on a regular 12-18 month cycle, with each relea
cluding a combination of quality improvements and a relatively small amount of new feat
In assessing features for Tiger it is necessary to balance the schedule goals for Tiger aga
desirability of individual features.

1.1 Themes

It is expected that most of the effort in the Tiger release will be around product quality
fixing) whilst maintaining full compatibility with previous J2SE releases. The themes
therefore focused on parts of the platform that will benefit the most from a small amou
feature work including any new APIs. The Tiger release is targeted at the following m
themes:

• Reliability, Availability, Serviceability
 - Monitoring and Manageability

• Performance and Scalability
• Ease of Development
• Desktop Client

1.1.1 Reliability, Availability, Serviceability - Monitoring and Manageability

The aim of this theme is to meet the needs of the growing installed base of business c
services deployed on the J2SE and J2EE platforms. One component is to enable the Ja
form to integrate with industry standard RAS tools.

1.1.2 Performance and Scalability

Improve both the scalability of server based applications that use the Java platform and th
formance of client and server based applications.

1.1.3 Ease of Development

The Java language and platform have been designed with ease of development in min
role of this theme is to drive further enhancements in this area for individual developers
developers of tools

1.1.4 Desktop Client

Java desktop users have different needs and challenges than server based develope
theme aims to address some of those needs.
Sun Microsystems Inc. 2 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents

I im-
ures

in
low for

ers,

release.
e re-

lective

ams.
t both

will
rivers

s have
Driv-

rs.

imple-
rgets

com-
gress

of Op-
1.2 Granularity

This specification is only intended to cover “substantial” features that have significant AP
pact. It is not intended to cover individual bug fixes or minor RFEs. Implementation feat
that do not require an API change are not part of this JSR.

This specification will not itself define any new APIs, rather it will reference APIs defined
other JCP Specifications or through the JCP maintenance process. See Section 1.4 be
more details on component JSRs included in Tiger.

1.3 Prioritizing Features

Target features for Tiger will be prioritized into three buckets: Release Drivers, Group Driv
and Targets of Opportunity.

1.3.1 Release Drivers

Release Drivers are those features that are considered essential to the success of the
They will be given the highest priority during the development phase, and if necessary th
lease may be delayed in order to accommodate delays in developing a Release Driver.

Because Release Drivers can potentially delay the release, we would like to be very se
in designating features as Release Drivers.

1.3.2 Group Drivers

Group Drivers are features that will be treated as priority items within engineering te
These features will take second place to Release Drivers, but will be tracked carefully a
the individual team level and the overall release management level.

The intention is that all Group Drivers will be included in the final release, but the release
not be delayed in order to accommodate a delayed Group Driver. Thus some Group D
may be dropped from the release.

We need to be careful to manage the number of Group Drivers so that engineering team
time to address their open bug lists and their performance items as well as all their Group
ers.

1.3.3 Targets of Opportunity (also known as “General Features”)

Targets of Opportunity are lower priority features than Release Drivers and Group Drive

The intention is that after engineering teams have resolved their bug backlogs and have
mented their Release Drivers and Group Drivers they will move on to implementing Ta
of Opportunity.

It is expected that in practice a large percentage of the Targets of Opportunity will be ac
modated in the release, but this will vary from area to area, depending on the teams’ pro
in addressing their other work. The release will not be delayed to accommodate Targets
portunity.
Sun Microsystems Inc. 3 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents

PIs
isting
ates to
mpo-

inal,
t have
fore

rence
some
r Ref-
tation
rsion

ce in
l re-
ically
need
ust be
se of
iger.
1.4 Component JSRs

The Tiger JSR is an “umbrella” JSR. It does not by itself define any APIs. Instead it lists A
that will be defined elsewhere in the Java Community Process. Small API updates to ex
APIs are being handled through the JCP maintenance process. New APIs or major upd
existing APIs are being handled through separate JSRs. The following table lists the co
nent JSRs that are being included in Tiger.

The last stage of JSR approval in the JCP is the “final” ballot. Before Tiger itself can go f
all its components must already have gone final. Thus each of the component JSRs mus
gone through all the steps of the Java Community Process, including the “final” ballot, be
this Tiger umbrella JSR can go final.

Some JSRs are initially being delivered independently from Tiger, with a separate Refe
Implementation and TCK. These JSRs can go final long before Tiger goes final. However
other JSRs (e.g. JSR-163) are being delivered for the first time as part of Tiger, and thei
erence Implementation and TCK is being delivered as part of the Reference Implemen
and TCK for Tiger. Thus, these JSRs can only go final when there is a suitably frozen ve
of the Tiger Reference and TCK, which will be shortly before Tiger itself goes final.

In order to allow concurrent development, the individual JSRs are not required to advan
lock step with the Umbrella JSR. The intention of the Umbrella JSR is to permit high leve
view of the Tiger release contents. For the component JSRs the initial JSR requests typ
provide enough information for this assessment. Thus the individual Tiger components
not be as far along in the JCP as the Tiger JSR itself. However, all component JSRs m
fully approved before they can ship in Tiger. If a component JSR goes awry (either becau
schedule difficulties, or because it gets rejected by a JCP ballot) it will be removed from T

JSR JSR Name
Tiger

Features
JSR

Status

003 Java(tm) Management Extensions
(JMX(tm)) Specification

4639350 Maintenance Review Com-
plete

013 Decimal Arithmetic Enhancement 4609098 Proposed Final Draft

014 Add Generic Types To The Java(tm)
Programming Language

4286955 Public Review

028 Java SASL Specification 4634892 Maintenance Review

114 JDBC Rowset Implementations 4639395 Public Review

133 Revise Java memory model 4639373 Passed Community Ballot

160 Java Management Exten-
sions(JMX(tm)) Remote API

4876725 Final Release Complete

163 Java(tm) Platform Profiling Architec-
ture

4639363 Public Review
Sun Microsystems Inc. 4 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents
Note: This is a draft JSR list

166 Concurrency Utilities 4486658 Public Review

174 Monitoring and Management specifi-
cation for the Java Virtual Machine

4530538 Public Review

175 A Metadata Facility for the Java Pro-
gramming Language

4636466 Public Review

200 Network Transfer Format for Java
Archives

4666040 Passed Community Ballot

201 Extending the Java Programming Lan-
guage with Enumeration, Autobox-
ing, Extended for loops and Static
import

4401321
4609038
4280390
4639378

Passed Community Ballot

204 Unicode Supplementary Character
Support

4533872 Community Review

206 Java API for XML Processing (JAXP)
1.3

4614947 Public Review

JSR JSR Name
Tiger

Features
JSR

Status
Sun Microsystems Inc. 5 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Index by Priority
2 Index by Priority

Release Drivers

4064105 Compile-time type safety with generics (JSR-014)
4530538 JVM monitoring and management API
4533872 Unicode supplementary character support (JSR-204)
4593133 API to generate Java stack traces for all threads
4636466 Java Language Metadata (Annotation)
4639350 Add JMX support into J2SE
4639363 Java Platform Profiling Architecture (JSR-163)
4640853 Support latest Unicode version

Group Drivers

4261803 Need an unsynchronized StringBuffer
4280390 Extended for loops
4287596 JPDA pluggable connections and transports
4313885 Scanning and formatting [scanning]
4401321 Add type-safe enums to Java
4421040 JPDA: Add Generics support
4449394 JDI: provide a read-only subset of JDI; add can...(); add exceptions
4486658 add concurrency library into Java core (JSR-166)
4495742 Add non-blocking SSL/TLS functionality, usable with any I/O abstraction
4609038 Request auto boxing of primitives in Java
4609098 Add Decimal Arithmetic Enhancements into J2SE (JSR-013)
4614947 JAXP support for current XML standards, XML/Namespace 1.1, SAX 2.0.1 (JSR 206)
4632193 Swing Skins Look and Feel
4639069 Make javac produce CLDC-style verification tables
4639373 Revise Java Memory Model (JSR-133)
4639391 update classfile specification (JSR 202)
4639395 support disconnected Rowsets (JSR-114)
4666040 Support pack/crunch compression for Java downloads (JSR-200)
4674944 On-the wire interoperability
4686178 Accessibility bugs for tiger
4700777 HTTP client: Connect and read timeouts
4728816 JPDA: Add support for enums
4748085 Support DOM L3
4856541 add varargs support
4876725 Add JMX JSR-160 to J2SE
4944151 (was 4164450) document com.sun.tools.javac.Main for use in a program.
Sun Microsystems Inc. 6 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Index by Priority
Targets of Opportunity

4173528 Add a method to generate a UUID (Universal Unique Identifier)
4495754 Add library support for common bit manipulation operations
4507539 support using dynamic proxies as RMI stubs
4533021 Container needs API to change Z-ordering of children
4623511 Documented api to call javadoc in process
4629589 Add Object Reference Template to ORB
4632213 Swing printing support
4633024 Augment Java math libraries with methods from C libm and IEEE 754
4633227 JDI spec: usage of methods implementing HotSwap feature needs clarification
4634457 Support for standard LDAP controls
4634892 Support for Java SASL API (JSR 28)
4635056 Support on-line certificate status checking protocol (OCSP)
4635454 Full pluggability for JSSE
4635618 LDAP Name Manipulation
4639378 support for importing constants
4639861 API to test reachability of a host
4667645 Improve Security Access and Control
4667658 JNLP API Enhancements
4696506 HTTP client: Improve cookie support
4696512 HTTP client: Improve proxy server configuration and selection
4702695 Add new AccessibleRelations, AccessibleRoles, AccessibleState (constants) (TP)
4702697 Introduce the AccessibleStreamable API method to javax.accessible (TP)
4813046 JVMTI spec requirements for debugging
4923484 Add RSA-OAEP parameters for XML Encryption
Sun Microsystems Inc. 7 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su

E 1.5
3 Reliability, Availability and Serviceability -
Monitoring and Manageability

Compile-time type safety with generics (JSR-014)
ID: 4064105 Release Driver
Also in theme: Ease of development

Summary

Adding generics support to the Java language adds additional compile-time
type safety checking and removes the needs for explicit casts which reduces the
possibility of runtime type errors

Description

Request inclusion of JSR 014: Add Generic Types To The Java Programming Language into J2S

The JSR proposal is to add generic types and methods to the Java programming
language. The main benefit of adding genericity to the Java
programming language lies in the added expressiveness and compile-time
type safety that stems from making type parameters explicit and making
type casts implicit. This is crucial for using libraries such as
collections in a flexible, yet safe way. The proposed extension is
designed to be fully backwards compatible with the current language,
making the transition from non-generic to generic programming very
easy. In particular, one can retrofit existing library classes with
generic interfaces without changing their code.

This is an updated description the previous description is in the comments field

JVM monitoring and management API
ID: 4530538 Release Driver

Summary

Monitoring and managing the JVM are key components of JVM serviceability. The
JVM should be able to hook into existing management consoles as well as provide
opportunities for new tools

Description

The API will provide support for both monitoring and managing
the core Java Runtime resources (especially for the JVM).

This will include:
 - heap and memory usage of an application
 - thread activity
n Microsystems Inc. 8 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su

nt API.
 - garbage collection and gc pauses in deployments
 - GC control settings
 - CPU usage
 - system thresholds and resource limits (quotas)
 - list number of file descriptors (and similar resources)
 - info on hardware resources (CPUs, memory, etc)

This API will provide a mechanism to track when a potential
low memory condition could exist [part of 4593108].

This RFE implements the subset of JSR-163 which specifies the Java monitoring and manageme
It also implements the requirements specified by JSR-174 which has no API specification.

API to generate Java stack traces for all threads
ID: 4593133 Release Driver

Summary

The ability to generate a thread dump programmatically using an API is need by
both J2SE client and server applications. The current mechanism doesn't work if
you don't have a console on windows and retrieval on other operating systems can
be improved for remote or large jvm installations

Description

Provide an API in Java to dump stack traces from Java programmatically.

The stack trace output should be in a standard well-defined format
so it can be parsed by third party tools.

An array of stack trace elements can be returned for a specific thread or
a map of strace trace array elements are returned for all threads.

Add JMX support into J2SE
ID: 4639350 Release Driver

Summary

JMX provides an established mechanism to support monitoring and manageability

Description

This project is intended to provide a standard Management API framework for
use within the Java Platform. This will support external customers
n Microsystems Inc. 9 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su
who want to add manageability to their applications, but it
will also be the base for adding more manageability support to the
JRE itself.

There are two main components to this project:

 Add support for JMX MBeans to the J2SE core.

 Add remote access to these MBeans through JSR 160.

Java Platform Profiling Architecture (JSR-163)
ID: 4639363 Release Driver
Also in theme: Ease of development

Summary

The addition of a new profiling api is to deliver additional profiling features
and improved profiling support that was previously available using jvmpi. ISVs
who are currently shipping tools based on jvmpi have driven this change and will
adopt the new api

Description

The specification will be for APIs to extract profiling information from a
running Java[TM] virtual machine. Both time and memory profiling will be
supported. Both sampling and exact mechanisms will be supported. The APIs will
be designed to allow implementations which minimally perturb the profile. The
APIs will allow inter-operability of profiling and advanced garbage collection
technologies. The APIs will allow reliable implementation on the widest range
of virtual machines, part of which will be achieved by grouping functionality
into optional sets.

Queries for which optional capabilities are supported will be provided. An API
will be provided by which containers may bill work to a component. The APIs
will be targeted to provide a Java programming language model of execution,
however, some aspects of the virtual machine, native and operating system
models may be directly provided or provided via an extension mechanism.
The APIs will be intended to supersede the current experimental interface - the
Java Virtual Machine Profiling Interface (JVMPI) - and thus must provide
roughly comparable functionality.

The APIs will accommodate implementations which can dynamically enable and
disable profiling; and thus will allow implementations which have negligible
performance impact when profiling is disabled. While profiling in the
application development phase will be the primary goal of this specification,
the design objectives for low performance overhead and data perturbation will
also support profiling in the deployment phase.

This work is being developed through the JCP as JSR-163.
n Microsystems Inc. 10 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su
JPDA: Add Generics support
ID: 4421040 Group Driver

Summary

Adding Generics (see 4064105) to the Java platform includes the use of
additional attributes that are not known by the current debug api. This feature
adds that additional support

Description

 but first - Impact of debugging on Generics
 Current generics proposal and implementation includes
 class-file attributes for generic class signature
 and generic member signature but do not
 provide generic type info for local variables. Thus
 one additional attribute will need to be added.

 Impact on JVMDI
 JVMDI will need to be extended to provide access to
 the three new attributes needed for generics. An
 alternative is adding functionality to JVMDI to
 extract arbitrary attribute information, but this
 has two problems: it is extremely complex and
 a random VM may not keep this information or may
 not keep it in a compatible form.

 Impact on JVMDI implementation (aka HotSpot)
 The above changes to JVMDI would need to be added
 to our VM.

 Impact on JDWP
 JDWP would need to be extended to transport this information.
 Either it would need to be packaged out of context or the
 it could be added consistently but this would break
 compatibility and the JDWP version would need to be reved.

 Impact on back-end and front-end
 They would need to be extended to traffic in this information.

 Impact on JDI
 The impact of class use vs. class reference (see below) is
 significant on the JDI because types are transparent.

 Design will take some head scratching and maybe more
 discussions. My first impression is that it will
 require several new interfaces and also functionality
 replicated for generics.
n Microsystems Inc. 11 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su
 Two new sub-interfaces of Type will need to be added.
 Their exactly structure will need to be carefully
 considered so that existing debuggers "fail" as gently
 as possible. Several other methods will need to be
 added to Method, ReferenceType, Type, ...

 Examples of functionality replication, in Method
 argumentTypes() and returnType() are defined;
 genericArgumentTypes() and genericReturnType() would
 need to be added. This could be rather ugly.

 Impact on JDB tool
 JDB should be reved to use the above new JDI functionality,
 this should be minor. More problematic is the impact on the
 expression evaluator (parser/interpretor). The parser would
 need to be overhauled. The interpreter currently cheats wrt
 type information, were it to be made correct this would add
 significant work. This was not our plan; our plan was to
 move expression evaluation down to the back-end. Generics
 would complicate this.

Class use vs. class definition
 Where class definition is for example (of Collection):

 public interface Collection { ... }

 And class use is for example (of Collection in Map):

 public Collection values();

 Both JDI and the Doclet API use class objects (aka class definition
 objects) to represent class uses. For example, method objects
 in both cases have a method:

 Type returnType()

 Where one subclass of Type is a class object. This works great in
 Java as we know it. In generic Java, the above definitions might
 look something like (forgive the simplification):

 public interface Collection<A> { ... }

 public interface Map<A,B> { ...
 public Collection values();
 }

 Here the use "Collection" is not the same as the definition
 "Collection<A>".
n Microsystems Inc. 12 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su

These
J2SE

JSRs
g this
aviour
for

for the
Add JMX JSR-160 to J2SE
ID: 4876725 Group Driver

Summary

JMX is the framework used to provide the monitoring and management support in
J2SE 1.5. JMX 160 provides a network connector to access this information
remotely in a management console or similar tool

Description

Add all required components of JSR-160 to J2SE.

Specifically, what should be added are these two packages from JSR 160:
javax.management.remote
javax.management.remote.rmi
JSR 160 defines three further packages which are optional and which will not be included in J2SE.
packages define a custom protocol which is relatively unproven, so we do not want to freeze it into
yet.

The intent is that JSR 160 can be used to access the JMX instrumentation of the JVM defined by
163 and 174. Depending on how the JVM is started, it can create a JMX MBean server containin
instrumentation, and create a JSR 160 connector making it available remotely. The default beh
will be not to do this but new command-line options will cause it to happen. It will also be possible
users to make their own instrumentation available through JMX and JSR 160.

The package structure of JSR 160 means that the client side will also be included, even though
uses above it is not strictly necessary.

JPDA pluggable connections and transports
ID: 4287596 Group Driver

Summary

The ability to add custom 3rd party transport mechanisms to jpda will improve
debugging to devices and allows additional transports other that plain sockets
or shared memory.

Description

This feature involves the ability to create a custom transport between the back
and front ends of the multi-layered JPDA technology. Such a transport could be
infrared, a serial cable, or other types of connections. This feature involves
only putting APIs to allow custom transports, and not developing any custom
transports.
n Microsystems Inc. 13 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su
JDI: provide a read-only subset of JDI; add can...(); add exceptions
ID: 4449394 Group Driver

Summary

The Java Debug Interface(JDI) is the high level debug API that interfaces to the
underlying Java debug wire protocol (JDWP). For some applications read only
access is allowed, this feature defines that subset

Description

Some JDI access will be read-only. Annotate the JDI specification with
which methods are usable when in read-only mode and which aren't. Specify
the exception that is thrown. Add something like a canModify() capability.

add concurrency library into Java core (JSR-166)
ID: 4486658 Group Driver
Also in theme: Ease of development ,Performance and Scalability

Summary

The concurrency utility library provides additional apis to make it easier to
write threadsafe multi-threaded code. The library provides popular utilities
like semaphores, atomic locks, read write locks and others.

Description

A great number of bugs occur simply due to developers need to create their own
concurrency constructs on top of Java's very low-level non-oo concurrency
constructs or using the Java's primitive constructs directly (necessitating a
high-degree of domain knowledge in regard to concurrency issues in both
cases).

By creating a standard concurrency library, the comparatively few concurrency
experts can provide the typical developer a higher-level, debugged, object-
oriented aid in the development of concurrent applications. The design
patterns and documentation that would accompany this library would also help to
increase the awareness and base level knowledge that the typical developer
would have regarding concurrent programming.

JSR-166 is developing such a library through the JCP.
n Microsystems Inc. 14 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su
Make javac produce CLDC-style verification tables
ID: 4639069 Group Driver

Summary

To achieve the optimal performance from the new J2SE verifier requires the class
files to contain a new verification table. javac is being extended to produce
this new table.

Description

javac should have an option to produce CLDC-style attributes
to support the "split verifier".

The "split verifier" is an important uograde to the classfile
specification which will be added to the J2SE spec as part of
Tiger feature 4639391.

On-the wire interoperability
ID: 4674944 Group Driver

Summary

RMI/IIOP interoperability is the main goal of this feature in allowing CORBA
systems to work together. The reference ORB needs to track current
interoperability standards

Description

This feature will include any resolutions from OMG that affect on-the wire
interoperability for the J2EE Application Servers. Since CORBA 2.3.1, several
interoperability issues have been submitted and resolved thru OMG. Since
RMI/IIOP interoperability is one of the main goals of J2EE, Sun's ORB needs to
incorporate resolutions/updates of any interop issues since CORBA 2.3.1.

Current plan is to identify major interoperability issues that have been
resolved to date since CORBA 2.3.1, and incorporate resolutions in Sun's J2SE
ORB. Some of the resolutions require changes to the existing APIs and
implementation.
n Microsystems Inc. 15 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su
JPDA: Add support for enums
ID: 4728816 Group Driver

Summary

The JPDA APIs must expose the elements of the Java language so that
they can be accessed by debuggers.

Description

This RFE
 4401321 Add type-safe enums to Java

will add a new language feature to Java that must be supported
in the JPDA APIs.

This RFE doesnt cover changing the JDI spec to use enums.

JDI spec: usage of methods implementing HotSwap feature needs clarification
ID: 4633227 Target of Opportunity

Summary

This feature clarifies the hotswap feature with regards to the JDI spec in order
for debug tools to correctly identify changed classes

Description

Specification of the JDI methods implementing HotSwap feature, i.e.
 4287595 JPDA: "HotSwap" Class File Replacement (Redefinition)
needs some clarification.

This is current specification for Method.isObsolete() in JDI part of
Java SDK 1.4:

 public boolean isObsolete()
 Determine if this method is obsolete.
 Returns:
 true if this method has been replaced by
 a non-equivalent method using
 VirtualMachine.redefineClasses(java.util.Map).

This specification is not enough clear in two aspects.

1. The meaning of the term "equivalent method" is not defined
n Microsystems Inc. 16 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su
neither here nor in VirtualMachine.redefineClasses(Map classToBytes).
This specification should have at least reference to method
equivalence in the specification for the JVMDI function Redefine
Classes
(http://java.sun.com/j2se/1.4/docs/guide/jpda/jvmdi-spec.html#RedefineClasses):

 An original and a redefined method should be considered
 equivalent if:
 their bytecodes are the same except for indicies into
 the constant pool and
 the referenced constants are equal.

2. The statement "true if this method has been replaced by a non-equivalent
method ..." should specify that this is restricted only to those methods
which have active stack frames.

Below is a piece from evaluation of 4514956 bug which clarifies correct
usage of isObsolete() method.
--

It is correct for isObsolete() to return false in this use case.

In the javadoc for VirtualMachine.redefineClasses() we have the
following:
 All classes given are redefined according to the definitions
 supplied. If any redefined methods have active stack frames,
 those active frames continue to run the bytecodes of the
 previous method. The redefined methods will be used on new
 invokes.

The key phrase is:
 "If any redefined methods have active stack frames,
 those active frames continue to run the bytecodes of the
 previous method."

Only in the case of those active stack frames will a call
to thread.frame(0).location().method().isObsolete()
return true. Thus you must be holding such a StackFrame
before or during the VirtualMachine.redefineClasses() call.
Any StackFrame or any Method lookup obtained after the
redefineClasses() will discover the redefined information,
and hence isObsolete() must correctly return false.

But the spec does not say that isObsolete() is supposed to be
used mainly for the methods which have active stack frames.

There is the only statement mentioning Method.isObsolete() in the spec
for VirtualMachine.redefineClasses():
 If resetting these frames is desired, use
 ThreadReference.popFrames(StackFrame) with Method.isObsolete().

This statement looks obscure. It would be quite fruitful to give here
some clues for the right usage of Method.isObsolete() method.
n Microsystems Inc. 17 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Reliability, Availability and Serviceability -Monitoring and Manageability

Su
JVMTI spec requirements for debugging
ID: 4813046 Target of Opportunity

Summary

The addition of these changes will make it possible to for debuggers to cleanly
catch vm startup and allow a clean shutdown.

Description

This feature collects the 4 original RFEs requesting changes to JPDA.

4232338 JDWP: Need new thread status for not-yet-started threads
4199411 JVMTI spec: add start thread to VM_INIT event.
4195445 JDWP, JDI: Add return value to Method Exit Event
4195444 JVMDI spec: Need exit call

We've only fixed the following for tiger:
 4195444 JVMDI spec: Need exit call
 4199411 JVMTI spec: add start thread to VM_INIT event.

The rest will be done in a post tiger release.
n Microsystems Inc. 18 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Scalability and Performance

Su
4 Scalability and Performance

Add non-blocking SSL/TLS functionality, usable with any I/O abstraction
ID: 4495742 Group Driver

Summary

Customers will be able to use the non-blocking sockets from the New IO package
in 1.4 with Secure Socket Layer(SSL) and the later IETF revision Transport Layer
Security (TLS) sockets.

Description

The current JSSE javax.net.ssl.SSLSocket API is based on the
java.net.Socket model, which by nature uses a blocking API model. The
introduction of java.nio.channels API (JSR-51) brought a selectable,
non-blocking I/O model to J2SE, but was not based on Sockets. Developers
have requested a non-blocking SSL/TLS implementation that could be
applied to such diverse I/O abstractions, such as:

 Socket-Input/OutputStream
 non-blocking I/O (polling) (e.g. SocketChannel-nonblocking)
 selectable non-blocking I/O, (e.g. SocketChannel-Selectors)
 other asynchronous I/O models (e.g. the proposed JSR 203)
 local ByteBuffers/byte arrays

A new abstraction called SSLEngine is introduced which separates the
SSL/TLS functionality from the I/O. The SSLEngine operates simply on
inbound and outbound byte streams, and it is the responsibility of the
SSLEngine user to arrange for reliable I/O transport to the peer. By
separating the SSL/TLS abstraction from the I/O transport mechanism, the
SSLEngine can be used with a wide variety of I/O types.

Need an unsynchronized StringBuffer
ID: 4261803 Group Driver

Summary

Significant performance improvement for common existing coding patterns.

Description

Every modification to StringBuffer is synchronized, to make it
thread safe. If a large string is being built from many small
pieces, this can be a significant CPU drain. I have yet to
n Microsystems Inc. 19 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Scalability and Performance

Su
encounter a situation where I am modifying a StringBuffer from
multiple threads, so I would very much like a class just like
StringBuffer that didn't synchronize.

It would be nice if such a class was included in the java.lang
package.

JNLP API Enhancements
ID: 4667658 Target of Opportunity
Also in theme: Desktop Client

Summary

This feature is based on feedback to the JNLP JSR (56) to improve performance,
extensibility and add additional services. JNLP is the transport mechanism used
by Java Web Start

Description

Customers have requested enhancements to the JNLP API (JSR-56). These are:

PrintService (4496952)
Extension management enhancements to support optional packages (4801527, 4802593)
Single Instance Service (4390904)
ability to associate a JNLP application with a file extension (4756982)
JNLP Shortcut/Menu creation (4667651)
Selectable file service (4436034, 4467214)

Support for standard LDAP controls
ID: 4634457 Target of Opportunity

Summary

This feature provides a standard implementation of certain ldap directory
routines that enables better management of large search results from LDAP queries

Description

Add support for the following two LDAP controls to the LDAP service
provider in JNDI:

 - Paged Results (RFC 2696)
 - Server-Side Sorting (RFC 2891)

The features are already supported by classes in the
com.sun.jndi.ldap.ctl package. This project migrates those classes
to the javax.naming.ldap package in J2SE.
n Microsystems Inc. 20 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Scalability and Performance

Su
n Microsystems Inc. 21 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Ease of Development

Su
5 Ease of Development

Java Language Metadata (Annotation)
ID: 4636466 Release Driver

Summary

This feature provides an annotation mechanism to improve ease of development,
especially for J2EE style web/enterprise applications by moving boilerplate type
code generation to developer tools

Description

Within the Java platform there has been a growing trend towards marking fields,
or methods, or classes as having particular characteristics that indicate they
should be processed in special ways by development tools, or deployment tools,
or run-time libraries.

For example, the JavaBeans architecture introduced various stylistic naming
patterns (such as getFoo/setFoo method names) that could be used to indicate
that particular methods were used for accessing properties, for registering
event handlers, etc. Similarly the Enterprise JavaBeans architecture introduced
various stylistic patterns that allow methods to be marked as remote methods,
home methods, etc. In addition, the EJB architecture defined significant extra
information in its deployment descriptors that is used to provide information
on things like the persistence relationships of fields, or the transaction
properties of methods, etc. Many other areas could benefit from this work,
including component architectures and testing platforms.

In general, the desire to provide various kinds of auxiliary information for
Java elements appears to be growing. While the existing mechanisms have been
adequate for simple uses, they are becoming increasingly awkward for more
complicated uses.

Since there seems to be a recurrent need to be able to provide auxiliary
information on Java language elements, it appears to be appropriate to define
an explicit way of doing this in the Java language, to allow arbitrary
attribute information to be associated with particular
classes/interfaces/methods/fields. We refer to this mechanism as "Java language
metadata".

We believe there are several elements needed as part of this work:

Definition of a Java language extension that allows medatadata information to
be supplied for (at least) classes, interfaces, methods, and fields. This
language extension will allow metadata to be recognized by development tools.
It appears likely that it will be useful to allow attribute values to be
associated with given metadata attributes.
The exact syntax will need to be determined by the expert group. There appear
to be a number of possibilities, including (but not limited to!) using a
n Microsystems Inc. 22 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Ease of Development

Su

cum-
Definition of a runtime delivery format for metadata and of runtime APIs so
that tools and libraries can accesss metadata information at deployment time
and at runtime.

Definition of rules for the attribute namespace so as to avoid accidental
collisions over the same attribute name. Details will be determined by the
expert group, but it seems that a mechanism similar to the Java class naming
conventions might be useful.

Add type-safe enums to Java
ID: 4401321 Group Driver

Summary

Enums are the 2nd most requested viable language feature.

The typesafe enum feature significantly simplifies a commonly occurring coding
pattern, adding clarity, type safety and robustness, and reducing the
likelihood of error. It is a feature that would be useful to nearly every Java
programmer. The proposed facility combines ease of use, power, and performance.

Description

Enumeration types similar to the c++ "enum" are not available in Java. I
searched the bug reports and could not find a match, this may be from a
dilution of other issues related to the terms Enumeration, Enumerated. Along
with the issues and workarounds outlined in

http://www.firstsql.com/java/gotchas/lfside3.htm

there is no way to use a type checked enumeration in the java "switch" statement with any of the
bersome
workarounds. I find I use a lot of enumerations with my coding style, it seems
this would also be useful for others programming in Java. I could go on here
but the point I am trying to make is simple.

(was 4164450) document com.sun.tools.javac.Main for use in a program.
ID: 4944151 Group Driver

Summary

Technologies such as java server pages that compile java code "on the fly" need
to perform a large number of 'javac' operations. Executing a separate process
for each run is inefficient so the compiler is called in process. However there
is no standardized javac method that can be called across JVMs. This feature
addresses this missing need
n Microsystems Inc. 23 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Ease of Development

Su
Description

Please document com.sun.tools.javac.Main for use within a Java program.

Extended for loops
ID: 4280390 Group Driver

Summary

Ease of development - significantly reduces verbosity of a very common
construct. Reduces the likelihood of error. Interacts well with generics.

Description

I believe that having foreach functionality in the Java Language
would be an excellent addition. This is easy to explain and
understand, so I will be brief.

Here is some sample code of mine:

Iterator paneIter= contentLists.keySet().iterator();

while(paneIter.hasNext()) {

 String paneName= (String) paneIter.next();
 //... loop body, maybe just one line
}

I would like for 'each' functionality so that this can reduce to:

for(String paneName, contentLists.keySet()) {
 //... loop body (no braces necessary if just one line)
}

Basically, what the compiler does is understand that the second
parameter to the for() construct is a Collection. Knowing
what a Collection is, it gets the iterator, and can produce in
a very straight forward way, the bytecode for the loop for the
code I first wrote.

Scanning and formatting [scanning]
ID: 4313885 Group Driver

Summary

The scanning and formatting improvements will help developers port applications
to Java and make it simpler to generate complex formatted output.
n Microsystems Inc. 24 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Ease of Development

Su
Description

An API for text scanning (based upon regular expressions) and formatting
(in the spirit of C's printf procedure). This API will bring regular
expressions and a compact notation for formatted output to the Java
platform.

Request auto boxing of primitives in Java
ID: 4609038 Group Driver

Summary

Converting primitive types to Java objects, for example with the collections
API, requires extra work by the developer to convert the type to a Java reference.
This feature will convert primitive types to Java types for assignments and when
passing as method parameters

Description

Provide a mechanism to auto box primitive types in Java. This is specified in JSR 201

support disconnected Rowsets (JSR-114)
ID: 4639395 Group Driver

Summary

From JSR 114

The current JDBC API provides an environment for creating and manipulating
tabular data associated with tabular data stores. Implementations of the Rowset
interface extend this model to allow tabular data to be passed between tiers and
components. This ability to "disconnect" tabular data from its source increases
the scalabilty of applications and the flexibility of the programming model.

Description

Provide richer support for JDBC Rowsets in the J2SE platform,
especially for disconnected rowsets.

This has been a significant missing feature for some time
and needs to be rectified.
n Microsystems Inc. 25 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Ease of Development

Su

ssage-
ents,
m is
tibil-
ort in

ed or
String-
tically
essage
as ja-
re awk-
format
eplaced

esafe.
ropose
ic (runt-
add varargs support
ID: 4856541 Group Driver

Summary

This feature allows java methods to accept variable arguments. This allows
simpler implementation of features like printf style formatting.

Description

Adding varargs to Java

Abstract

We propose to add variable argument list methods to Java. Existing methods (such as java.text.Me
Format.format) could be retofitted to accept variable argument lists without affecting existing cli
while enabling new clients to use an improved invocation syntax. The overload resolution algorith
modified to support variable argument lists, boxing, and unboxing while retaining backward compa
ity both at compile-time and runtime. The implementation resides entirely in the compiler; no supp
the VM is necessary.

Motivation

Java has two different kinds of interfaces for composing text output. The first kind consists of chain
sequential method calls such as those from java.io.PrintStream or composition using java.lang.
Buffer (or the moral equivalent using String concatenation). These methods are convenient and sta
typesafe but these techniques do not internationalize well because the order of "snippets" in a m
are fixed by the order of calls in the source. The second kind consists of "formatting" classes such
va.text.MessageFormat and related classes that support internationalization. These interfaces a
ward to use and are not statically typesafe, but internationalization is easily supported because the
argument that specifies the order and content of the assembly of the resulting message can be r
at runtime with one appropriate to the user's native tongue. Think "resource files".

The ideal would be formatting classes that are easy to use, internationalizable, and statically typ
These three goals cannot be achieved without nontrivial innovation in the language. Instead we p
a simple language extension that is easy to use and internationalizable, and that supports dynam
ime) type safety. No VM modifications are necessary.

Examples

I'll introduce the language feature by way of an example.

package java.text;

class MessageFormat {
 public static String format(String pattern, Object[] arguments...)
 {
 // body omitted
 }
}

n Microsystems Inc. 26 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Ease of Development

Su

acility.
he re-
vo-

nalized
ion.
e, etc
new

o sup-
array

s itself
sting
ly; in

on
e JVM

nver-
r com-
isting

st pass
ng con-

es in
nsuring
ay for-
This shows one possible way to modify an existing class to take advantage of the new language f
This existing method has been modified by adding the new ellipsis token "..." to the declaration. T
sulting method appears identical from the point of view of the VM, but the compiler allows a new in
cation syntax:

import java.text.MessageFormat;
import java.io.PrintStream;
class Test {
 public static void test(PrintStream out, String[] args) {
 // existing invocation syntax
 out.println(MessageFormat.format("Args are {0} {1} {2}",

 args));
 // new invocation syntax
 out.println(MessageFormat.format("Names are {0} {1} {2}",
 "Neal", "Josh", "Mark"));
 }
}

This may not appear to be much of an advantage, but in real applications that have been internatio
a fair bit of scaffolding typically exists to simplify what would have been required before this extens
Typical clients simulate varargs by declaring a series of overloaded methods, with one, two, thre
additional arguments. As an example of the scale of the simplifications that will be possible with the
invocation syntax, see the class com.sun.tools.javac.util.Log in the implementation of javac.

Synopsis of the Specification

JLS 8: Formal Parameters

The syntax for method declarations (JLS 8.4) and constructor declarations (JLS 8.8) are modified t
port an ellipsis before the closing paren. A method declared with an ellipsis is required to have an
type as its last formal parameter.

JLS 8: Overriding

We would like to require (JLS 8.4.6.1 and 8.4.6.4) that a method that overrides a varargs method i
declared with an ellipsis. We cannot do that for backward comatibility because retrofitting an exi
method with an ellipsis would break its overriders. Instead, in -source 1.5 it would be a warning on
-source 1.6 (or some later release) it would be enforced as an error.

JLS 13: Binary Compatibility

The binary compatibility chapter (JLS 13) is modified to require the new JVM "Varargs" attribute
those methods that were declared with an ellipsis an on no others. Or perhaps this belongs in th
specification.

JLS 15: Overload Resolution

Background: Overload resolution (JLS 15.12) must be modified to support boxing and unboxing co
sions. Those changes require using a two-pass overload resolution algorithm. The first pass is fo
patibility, and excludes boxing conversions and unboxing conversions. This ensures that ex
methods and method invoations are unchanged in their semantic interpretation. Only when the fir
finds no applicable methods does the second pass take place, which considers boxing and unboxi
versions as well.

We further modify this new overload resolution algorithm for varargs. The first pass ignores ellips
the methods under consideration, even when the methods have been retrofittted for varargs, e
backward compatibility. The second pass allows a sequence of arguments to match the trailing arr
n Microsystems Inc. 27 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Ease of Development

Su

nt type

e meta
he one
e more

g its
re.
mal parameter of a method declared with an elipsis when the values can be converted to the eleme
of the array.

As now, overload resolution selects among the candidates by finding the most specific method. Th
rule is that one method is more specific than another if all arguments that could be accepted by t
could be accepted by the other. These new rules allow the possibility that two (or more) methods ar
specific than each other; this is considered an ambiguity and results in a compile-time error.

JLS 15: Runtime evalutation of method invocation

Argument evaluation (JLS 15.12.4.2) must be modified to specify allocating an array and initializin
elements from the relevant arguments if this is necessary to match the invoked method's signatu
Examples

class U {
 static void f(String s, int a, short b) {
System.out.println("a");
 }
 static void f(String s, int a, int b) {
System.out.println("b");
 }
 static void f(String s, Integer[] args ...) {
System.out.println("c");
 }
 static void f(String s, Number[] args ...) {
System.out.println("d");
 }
 static void f(String s, Object[] args ...) {
System.out.println("e");
 }
 public static void main(String[] args) {
f("x", 12, (short)13);// a
f("x", 12, 13);// b
f("x", 12, 13, 14);// c
f("x", 12, 13.5);// d
f("x", 12, true);// e
 }
}

support for importing constants
ID: 4639378 Target of Opportunity

Summary

The current workarounds used by developers to create static constants requires
them to implement an interface or class. This feature will allow the use of a
simple import statement to achieve the same result.
n Microsystems Inc. 28 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Ease of Development

Su
Description

Many classes and interfaces defines constants as static final values
such as RED, BLUE, GREEN, etc.

Programmers often want to have easy access to these constants so
they can name then as simply RED, BLUE, etc.

At the moment there is no direct support for doing this in the
Java language. Unfortunately a rather dangerous idiom has emerged
to work around this limitation. Programmers define the constants in
interfaces and then those classes that want easy access to the
constants say that they implement the interface. This pulls the
constants into scope.

Unfortunately this idiom doesn't simply affect the implementation
of the class. It also affects its API. So for implementation
convenience programmers are tempted to add implementation features
into their class API.

It seems better to solve this at the Java language level by adding
an explicit mechanism to import statics from a class or interface.

This might take the general form:
 import static x.y.Z.*;

which would mean import all static constants from the class x.y.Z.
n Microsystems Inc. 29 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Desktop Client

Su

t can

prove-
net-

lume
6 Desktop Client

Swing Skins Look and Feel
ID: 4632193 Group Driver

Summary

Skins are easier to develop and maintain than to create a new L&F
programatically with the additional benefit that a large number of skins already
exist

For 'themed' environments Java needs to meet the accessibility requirement as
mandated by Section 508 of the Federal Rehability Code.
 See http://www.access-board.gov/sec508/guide/1194.21.htm#(g) for
 the specific requirement in the 508 regulations: "Applications
 shall not override user selected contrast and color selections
 and other individual display attributes."

Description

Add a new plaf to Swing that will allow people to use "skins", such as
those that come with GTK. This will allow developers and graphic
artists alike the ability to make their own customized look, and to
some extent feel, without resorting to APIs.

Support pack/crunch compression for Java downloads (JSR-200)
ID: 4666040 Group Driver

Summary

This technology has already been used to reduce JRE download sizes. This feature
is aimed towards providing a technology to reduce download size for all
applications improves the end user experience, adoption rates and saves
bandwidth cost.

Description

Support pack/crunch compression for user based Java downloads to reduce download size.

From JSR 200

This JSR will define a dense download format for JavaTM classfiles. It is expected that this forma
achieve considerable size savings over compressed JAR files.

In recent years, we have had great advancement of processor speeds with comparatively poor im
ments in network bandwidth, leaving us with high performing, low cost systems operating on slow
works. With the growing popularity of the JavaTM Programming Language, the overall size and vo
n Microsystems Inc. 30 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Desktop Client

Su

b de-
lation
the byte
much
of JavaTM applications have multiplied and it is desirable to reduce the download size for large we
ployed JavaTM applications. Currently the JavaTM platform uses JavaTM Archive (JAR) encapsu
of these applications and their classes. The JavaTM archive format can compress these classes at
level only, leading to a meager reduction factor of about two. We need to compress the classes
more efficiently, thus making network transfers faster and therefore more reliable.

Accessibility bugs for tiger
ID: 4686178 Group Driver

Summary

This feature details the accesibility work as determined by the working
committee for Section 508 (federal USA) rehability Code.

Java needs to meet the accessibility requirement as mandated by Section 508 of
the Federal Rehability Code.
http://www.access-board.gov/sec508/guide/1194.21.htm

Description

This is a blanket list of the accessibility bugs
that need to be fixed by the Swing team in Tiger.

4634626 Implement context popup menus for components
4504068 Inconsistency in showing value
4495286 JTable needs an accessible method to select rows/cols when cell selection is false
4422535 AccessibleValue implementation only accepts Integers
4422362 AccessibleValue wrong maximum value with BoundedRangeModel components
4170173 JTextComponent.AccessibleJTextComponent.getAfterIndex works incorrectly
4303294 Implement discontiguous selection from the keyboard for list-like components

New additions
4104452 JRadioButton - Arrow keys don't work
4804344 JTree should support + and - to expand and collapse nodes.
4733624 AccessibleIcon returns null on Accessible Children of JList

Add new AccessibleRelations, AccessibleRoles, AccessibleState (constants) (TP)
ID: 4702695 Target of Opportunity

Summary

Several new AccessibleRelations and AccessibleRoles that are used in other
desktop applications do not have equivalent support in Java. This feature adds
those that are missing to the Java Accessibility API
n Microsystems Inc. 31 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Desktop Client

Su
Description

Add new AccessibleRelations, AccessibleRoles, and AccessibleState: (constants)

New relations:
 "Flows_to"
 "Flows_from"
 "Subwindow_of"

New roles:
 "Header"
 "Footer"
 "Paragraph"
 "Ruler"

New state:
 "Manages_Descendents"

Improve Security Access and Control
ID: 4667645 Target of Opportunity

Summary

Many Java Web Start customers are require higher levels of access control than
currently supported by JWS. This feature would make this configuration easier
for deployment and development use.

Description

We've rec'd requests from both developers and deployers to provide
more control over Java deployment's security settings. This includes:

Security level support
Enterprise Security/ "Security Zones"
Accepted certificate management
Maintain Authentication Sign-ons (4371730)

Introduce the AccessibleStreamable API method to javax.accessible (TP)
ID: 4702697 Target of Opportunity

Summary

This is an accessibility requirement as mandated by Section 508
of the Federal Rehability Code.
n Microsystems Inc. 32 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Desktop Client

Su
Description

In several situations it is highly desirable for assistive
technologies to parse and present the raw stream behind a component
on the screen (e.g. HTML, bitmap images, MathML). This new interface
provides a standard way to get at and use that stream. This
interface is already in the GNOME Accessibility API.

Further, we would like to see this interface implemented on
HTMLEditorKit for HTML text, and on ImageIcon (and the Swing classes
that embed ImageIcons like JButton).
n Microsystems Inc. 33 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su

ough-
nder-
ting or

port the

aracter
port the
7 Miscellaneous

Unicode supplementary character support (JSR-204)
ID: 4533872 Release Driver

Summary

Supplementary characters are needed for support of additional Chinese and
Japanese characters introduced since Unicode 3.0. Unicode 3.0 was based on 16bit
unicode characters with a maximum limit of 65,536 characters, Unicode 3.1 and
3.2 exceed that limit with needs to handle 94,000 and 95,000 characters
respectively

Description

Support Unicode "supplementary characters" (as defined in http://www.unicode.org/glossary/) thr
out the J2SE platform. This affects APIs and implementations for character properties, I/O, font re
ing, and other areas. Supplementary characters cannot be handled by the existing APIs accep
returning single 16-bit char values, so a new approach is necessary.

Once support for supplementary characters is defined, the Java platform can be upgraded to sup
latest Unicode version (RFE 4640853).

Support latest Unicode version
ID: 4640853 Release Driver

Summary

The supported version of Unicode in Java is 3.0. Upgrading to 4.0 will
enable customers to develop up-to-date applications to meet international
business and government requirements.

Description

The Java programming language and APIs use the Unicode standard as the foundation of their ch
representation. Unicode is an evolving standard, and the Java platform needs to be updated to sup
latest stable Unicode version available at the time of code freeze.

Goal is Unicode 4.0 as the supported spec in Tiger release.
n Microsystems Inc. 34 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su

exist-
l and
Revise Java Memory Model (JSR-133)
ID: 4639373 Group Driver

Summary

The current specification has been found to be hard to understand and has
subtle, often unintended, implications. Certain synchronization idioms sometimes
recommended in books and articles are invalid according to the existing
specification. Subtle, unintended implications of the existing specification
prohibit common compiler optimizations done by many existing Java virtual
machine implementations.

Only the specifications will be updated in each case.

Description

The proposed specification describes the semantics of threads, locks, volatile
variables and data races. This includes what has been referred to as the Java
memory model.

The specification is expected to revise substantially Chapter 17 of "The Java
Language Specification" and Chapter 8 of "The Java Virtual Machine
Specification". It is not expected to result in changes to existing APIs, but
clarify the semantics of some existing methods in java.lang.Thread and
java.lang.Object (java.lang.Object defines the wait and join methods).

This work is being done in the JCP as JSR-133.

Add Decimal Arithmetic Enhancements into J2SE (JSR-013)
ID: 4609098 Group Driver

Summary

Big decimal support is used by financial applications however operators used for
example currency calculations or mortgage calculations is missing and this
feature fills those needs

Description

Add the functionality of JSR-013 Improved Decimal Arithmetic
into the J2SE core.

From JSR-013
The proposed enhancements to the BigDecimal class primarily add floating point arithmetic to the
ing class, allowing the use of decimal numbers for general-purpose arithmetic (especially financia
n Microsystems Inc. 35 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su

to and
inad-

ew
user-centric applications) without the overheads and potential errors resulting from conversions
from another type. In addition, safe conversion methods are added to protect programmers from
vertent data loss.

JAXP support for current XML standards, XML/Namespace 1.1, SAX 2.0.1 (JSR 206)
ID: 4614947 Group Driver

Summary

JAXP is a key part of Java web services support . This feature updates the
current XML delivered technologies to XML 1.1 and Namespace 1.1 and Sax 2.0.1

Description

Tiger should support the latest version of JAXP.

This should include (for example) XML Schema support.

The XML current XML specifications have been revived. JAXP will be update to conform to the n
specifications:
 XML 1.1
 Namespaces 1.1
 SAX 2.0.1

HTTP client: Connect and read timeouts
ID: 4700777 Group Driver

Summary

Client Java applications cannot set timeouts on server connections at an
application level. This feature will enable application level timeouts so that
client applications can return promptly if remote servers are not available.

Description

The current HTTP API provides no way of requesting timeouts on connect and
read operations. (Actually there is a way to request timeouts, but it involves
system properties and it only sets timeouts on a global basis.)

This feature will be of obvious benefit to any HTTP client application that
must behave robustly in the face of server failure.
n Microsystems Inc. 36 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su

d in

d using
Support DOM L3
ID: 4748085 Group Driver

Summary

JAXP is an important part of Java web services support, this feature increments
the supplied technologies to support Document Object Model Level 3

Description

Dom Level 3 will be out in the J2SE 1.5 time frame. It will be advantageous for JAXP being include
J2SE 1.5 to support.

Container needs API to change Z-ordering of children
ID: 4533021 Target of Opportunity

Summary

Currently the only way to change the order of how components are overlapped is
to remove the components and add them back in a different order. This feature
will provide an api to do this programmatically which can then be used when
navigating though components via a keyboard

Description

When an application that uses partial or completely overlapping stacked canvases is implemente
Java, it usually
requires creating a lightweight panel for each stacked canvas and
adding all those panels as children of some top level lightweight
window. Each panel can in turn contain a number of components.

During application execution, those canvases need to be raised
and lowered programmatically. A common case is that the user
uses the keyboard to navigate to a text component on a canvas
which is currently obscured by another canvas, and therefore
needs that canvas to come to the top of the Z-order.

The current implementation of Z-ordering in a container is static
in the sense that Z-order of each child relative to the others is
decided once at the time the child is added to the container, and
never altered. This means the only way we can alter the Z-order
of existing components in a container is by removing some set of
components and adding them again to the same container at with
n Microsystems Inc. 37 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su
different indices. This is not ideal, because the removal process
causes handlers to be called, resources to be destroyed, and focus
to shift, which in turn requires a workarounds to get everything
back to the state where it was before the Z-order modification.

We propose that an API be added to the Container class to allow
Z-order to be changed dynamically. _Raising_ a child component in
the Z-order of its parent container using this API should not
generate focus events or cause any other unnecessary handlers
to be called, though lowering a child could potentially have
more ramifications, and perhaps it might make sense to add new
listeners and events to track movement in the Z direction.

This API could mirror "add(component, index)" on Container and
perhaps be called "setZOrder(component, index)".

Add Object Reference Template to ORB
ID: 4629589 Target of Opportunity

Summary

This feature is being evaluated to add basic RAS features such as load balancing
support in the J2SE ORB

Description

Work has been proceeding to define an object reference template standard
through the OMG. This is an extension to portable interceptors that supports
portable server activation frameworks, load balancing, fault tolerance,
dynamic bridging, and other advanced features. We plan to add this to the
J2SE ORB.

API to test reachability of a host
ID: 4639861 Target of Opportunity

Summary

Raw socket support has been discussed for a number of releases, the ability to
ping from within Java has been seen as missing and been a popular feature
request. A number of third party & open source APIs are available but there is
no standard API that network management applications and tools can rely on.

Description

This RFE is submitted to track the requirement to test the reachability
of a host (or more likely an InetAddress). This RFE stems from the
n Microsystems Inc. 38 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su
feedback to 4093850 "ICMP protocol support a.k.a. PING applets" where
it clear that many developers have a basic requirement to test if a
host was reachable (something akin to the ping utility).

In its simplist form it we could test if a host is reachable
within a specified timeout. Another variant could be to test if
a host is reachable from a specified java.net.NetworkInterface.

Implementation-wise there needs to be flexibility to choose how
reachability is determined. If we can create an ICMP socket then
we can send/receive an echo request/reply ala classic ping.
Alternatively if we can't create an ICMP socket then a UDP or TCP
approach might be used (for example we could send a UDP packet to
the echo port and handle timeout/port unreachable).

support using dynamic proxies as RMI stubs
ID: 4507539 Target of Opportunity

Summary

This feature would benefit the customer by simplifying the development and
deployment of applications that use RMI. One build-time step (use of the rmic
tool) would be eliminated, and a major potential source of errors (using
out-of-date stub classes, incorrectly installed stub classes, etc.) would be
eliminated as well.

Description

Currently, exporting a remote object from J2SE RMI requires the presence of a
pre-generated stub class whose name is a function of the remote implementation
class being exported. This stub class typically must be generated as a separate
compile-time step using the "rmic" tool, and it must be made available to all
clients of the remote object through various possible means (HTTP server, file
system, etc.).

It would be very straightforward for RMI to instead use a dynamic proxy class
(obtained using the java.lang.reflect.Proxy API) for the remote stub of a remote
object being exported-- in fact, java.lang.reflect.Proxy was designed with this
application in mind, and its generated dynamic proxy classes are very similar to
the stub classes generated by "rmic" with the "-v1.2" option used. This would
require one new public class in the java.rmi APIs: a public InvocationHandler
class whose instances contain a java.rmi.server.RemoteRef instance.

Supporting the use of dynamic proxies as RMI stubs would simplify the
development and deployment of RMI applications by eliminating the "rmic" step
from the build process and by eliminating the need to provide for the
distribution of remote stub classes.

It would also facilitate exporting dynamic proxy instances as remote objects
n Microsystems Inc. 39 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su
themselves (which is currently only prevented by the need for named stub
classes), which has also been a highly requested feature-- which would allow for
more convenient logging, checking, and other server-side pre- and
post-processing handling of remote method invocations.

Documented api to call javadoc in process
ID: 4623511 Target of Opportunity

Summary

Addiing an api to call javadoc in process will make it easier for IDE tools to
read javadoc information without having to start a separate javadoc program.
This improves performance on desktop clients

Description

Documented api to call javadoc in process with a JVM rather than
as a separate process. This makes it easier for IDE tools to use the output
without having to re-read the information from a file

Swing printing support
ID: 4632213 Target of Opportunity

Summary

This feature resolves some the anomalies experienced when printing certain Swing
components

Description

Swing currently doesn't extend the default printing behavior. The result is
often unexpected behavior when printing a Swing component. For
example, if you print a text page, Swing will print the Scrollbar to paper.

Swing should extend the default printing behavior to paint the basic
contents of the component in a manner consistent with the output device.

Initially will be targeting the JTable Component.

This is an umbrella printing bug, the JTable change is tracked as 4791650
n Microsystems Inc. 40 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su
Augment Java math libraries with methods from C libm and IEEE 754
ID: 4633024 Target of Opportunity

Summary

This feature is to complete the support of Java mathematic functions for those
developers who want to migrate from C to Java.

Description

The current Java math libraries (java.lang.Math and java.lang.StrictMath) lack
many methods found in the C math librariy (e.g. hyperbolic transcendental
functions) as well as functions recommended by the IEEE 754/854 floating-point
standards. Java's math library should be augmented to include these methods.

The list of major math library methods added are

log10
cbrt
hypot
sinh, cosh, tanh
log1p
expm1

Additionally, ulp and signum were added.

Full pluggability for JSSE
ID: 4635454 Target of Opportunity

Summary

The level of encryption and its restrictions differs widely, this feature will
allow 3rd parties to add new cryptographic providers to the Java Secure Socket
Extension without having to release their own JRE

Description

JSSE in J2SE 1.4 allows certain pluggabilities (i.e., crypto providers),
but it has several limits. We should provide full pluggability for JSSE.
n Microsystems Inc. 41 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su
LDAP Name Manipulation
ID: 4635618 Target of Opportunity

Summary

Developers are currently forced to manipulate LDAP-style names at the character
level. The rules are complex enough that it is difficult to get this completely
right. This feature will provide a few methods that provide this support and
improve ldap deployments

Description

 The JNDI API provides a generic way to access names across multiple
 naming systems. Due in large part to this generality, there is little
 in the way of support for performing syntactic manipulations that
 depend on idiosyncrasies of the underlying naming systems. The
 manipulation of LDAP-style names is particularly common, and is
 particularly difficult without such support. Methods will be added to
 the javax.naming.ldap package to assist developers with the escaping
 of name components while composing LDAP names, and the unescaping of
 name components while decomposing them.

HTTP client: Improve cookie support
ID: 4696506 Target of Opportunity

Summary

There is no standard way for applications to parse the Set-Cookie value to
manage cookies as a Java http client. This feature will add this functionality

Description

Improve cookie support. Currently cookie support is limited
to header set/get and the HTTP API lacks a framework for managing
cookies.

There are no standard Java classes to support cookies on
the client side, and only limited cookie support for
servlets. At best, clients must directly examine the "Set-
Cookie:" and "Set-Cookie2:" HTTP headers themselves, and
parse the values.
n Microsystems Inc. 42 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su

ma-
On the server side, support for cookies is limited to the
servlet "Cookie" class APIs, which are basically a set of
instance variable accessor methods only, plus the ability
to retrieve cookies from and add them to a client's
HttpServletRequest object. They do not, however, aid
servlets which also wish to act as HTTP clients in their
own right.

There is no support for collections of cookies, managed as
a single object instance, for either clients or servers.

There is very limited support for handling URL redirections
for HTTP clients (the only option is for the client to deal
with them itself), and no support for managing cookies
during URL redirections.

Add a method to generate a UUID (Universal Unique Identifier)
ID: 4173528 Target of Opportunity

Summary

This feature requests the addition of a Universal Unique Indentifier in Java,
this value can be generated using the host operating system and is useful for
persistant Java objects

Description

This feature is to add UUID functionality to the J2SE platform by the addition of a UUID class for
nipulating Leach-Salz variants.

The uuid (Universal Unique Identifier) is an XOPEN standard
for creating a globally unique id.

Quoting below from:
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm

"A UUID is an identifier that is unique across both space and
time[note 1], with respect to the space of all UUIDs. A UUID
can be used for multiple purposes, from tagging objects with
an extremely short lifetime, to reliably identifying very
persistent objects across a network.

The generation of UUIDs does not require a registration
authority for each single identifier. Instead, it requires a
unique value over space for each UUID generator. This
spatially unique value is specified as an IEEE 802 address,
which is usually already applied to network-connected
systems. This 48-bit address can be assigned based on
an address block obtained through the IEEE registration
n Microsystems Inc. 43 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su

d is not
authority. This UUID specification assumes the availability
of an IEEE 802 address. "(end quote)

Note 1:
http://www.opengroup.org/onlinepubs/9629399/apdxa.htm#tag_foot_1

We use a UUID as an object id for each business object. These
objects could be created in different countries (i.e different web
servers) and are replicated to many databases. The best solution
to this is the uuid. We are writing an all Java likeness to the uuid,
but since there is no 100% pure Java way to access the 48-bit IEEE
802 address (network card id) then we cannot faithfully reproduce
a true uuid.

On some systems, generating a time-space based UUID requires privileged user credentials an
currently implemented, time, random,name and DCE are available

Add library support for common bit manipulation operations
ID: 4495754 Target of Opportunity

Summary

This feature requests the addition of additional operations on data bits. While
programmers don't need these every day, they're difficult to get right
and extremely difficult to get fast. We already have fast, correct
implementations hidden inside of BigInteger (private methods). Further, once
we've made these into public mehtods (presumably in Integer and Long), VMs will
be free to intrinsify them, at which time they'll be blindingly fast.

Description

Java adds the arithmetic shift operator, but roll and count leading zeros would
be very nice intrinsic routines (bytecodes anyone). These are very important
for bit-twidling, and have fast processor-specific equivalents on most
processors.

Support for Java SASL API (JSR 28)
ID: 4634892 Target of Opportunity

Summary

This feature provides a standard API allows customers to supply their own SASL
mechanisms in an open and supported way.

The Java SASL API (and the underlying supported SASL mechanisms) may be used by
n Microsystems Inc. 44 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su
other standards that use SASL, such as IMAPv4.

Description

 The LDAP service provider supports SASL authentication by using
 a preview of the Java SASL API (JSR 28). In the Tiger timeframe,
 JSR 28 will be final. The API should be integrated into
 Tiger and the LDAP service provider should be modified to use it.

 Also migrate SASL mechanisms (digest-md5, GSSAPI, and External) to use JSR
28.

Support on-line certificate status checking protocol (OCSP)
ID: 4635056 Target of Opportunity

Summary

This feature will allow customers to be able to check the status of a
certificate on-line which is important in ensuring security.

Description

Provide client side support for OCSPv1 (RFC 2560) as an alternative
revocation check mechanism to CRLs. This is to be integrated into the CertPath
API and the Sun CertPath provider.

HTTP client: Improve proxy server configuration and selection
ID: 4696512 Target of Opportunity

Summary

This feature is to add management of HTTP proxy servers by using a HTTP client
API

Description

Improve proxy server configuration and selection. Currently
proxy server configuration is static, global, and configured only
by system properties. This needs improvements so that proxy server
configuration is dynamic, controllable by web containers and some
applications, and failure of proxy servers needs to be handled.
This item will require small-scale API additions.
n Microsystems Inc. 45 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Miscellaneous

Su
Add RSA-OAEP parameters for XML Encryption
ID: 4923484 Target of Opportunity

Description

In section 5.4.2 of the W3C XML Encryption recommendation
(http://www.w3.org/TR/xmlenc-core) it specifies the RSA-OAEP
algorithm for key transport.

The JCE does not allow an application to specify the OAEPParams
element as input to the RSA/ECB/OAEPWith<digest>And<mgf>Padding
transformation.
n Microsystems Inc. 46 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Open Issues

Sun Microsystems Inc. 47 Version :0.47 12/16/03

8 Open Issues

Note: Open Issues are to be resolved before final release of this draft.

Issue with dropped Target of Opportunity 4629583 “Bring J2SE ORB up to date with
recent OMG specification” The current level of CORBA compliance is 2.3.1 with mod-
ifications and with interoperability GIOP 1.2.

Description of 4629593:

The current Sun ORB shipping as part of J2SE 1.4 is CORBA 2.3.1 compliant.
We need to update the ORB in J2SE 1.5 for compliance to CORBA 2.5.
in the areas of Java to IDL/IDL to Java and POA

Also request of inclusion of the following Java exceptions
org.omg.CORBA.REBIND
org.omg.CORBA.TIMEOUT
org.omg.CORBA.TRANSACTION_UNAVAILABLE
org.omg.CORBA.TRANSACTION_MODE
org.omg.CORBA.BAD_QOS
org.omg.CORBA.ACTIVITY_COMPLETED
org.omg.CORBA.ACTIVITY_REQUIRED
org.omg.CORBA.INVALID_ACTIVITY

In addition,the inclusion or exclusion of this feature should not prevent an
implementor’s ability to supply a later CORBA orb through an approved
mechanism. Any issues preventing this are to be resolved as part of this
specification.

J2SE 1.5, “Tiger” Release Contents Feature Index

Sun Microsystems Inc. 48 Version :0.47 12/16/03

9 Feature Index

9.1 Index by Feature ID

4064105 Compile-time type safety with generics (JSR-014) 8
4173528 Add a method to generate a UUID (Universal Unique Identifier) 43
4261803 Need an unsynchronized StringBuffer 19
4280390 Extended for loops 24
4287596 JPDA pluggable connections and transports 13
4313885 Scanning and formatting 24
4401321 Add type-safe enums to Java 23
4421040 JPDA Add Generics support 11
4449394 JDI provide a read-only subset of JDI 14
4486658 add concurrency library into Java core (JSR-166) 14
4495742 Add non-blocking SSL/TLS functionality, usable with any I/O abstraction 19
4495754 Add library support for common bit manipulation operations 44
4507539 support using dynamic proxies as RMI stubs 39
4530538 JVM monitoring and management API 8
4533021 Container needs API to change Z-ordering of children 37
4533872 Unicode supplementary character support (JSR-204) 34
4593133 API to generate Java stack traces for all threads 9
4609038 Request auto boxing of primitives in Java 25
4609098 Add Decimal Arithmetic Enhancements into J2SE (JSR-013) 35
4614947 JAXP support for current XML standards, XML/Namespace 1.1, SAX 2.0.1 (JSR 206) 36
4623511 Documented api to call javadoc in process 40
4629589 Add Object Reference Template to ORB 38
4632193 Swing Skins Look and Feel 30
4632213 Swing printing support 40
4633024 Augment Java math libraries with methods from C libm and IEEE 754 41
4633227 JDI spec usage of methods implementing HotSwap feature needs clarification 16
4634457 Support for standard LDAP controls 20
4634892 Support for Java SASL API (JSR 28) 44
4635056 Support on-line certificate status checking protocol (OCSP) 45
4635454 Full pluggability for JSSE 41
4635618 LDAP Name Manipulation 42
4636466 Java Language Metadata (Annotation) 22
4639069 Make javac produce CLDC-style verification tables 15
4639350 Add JMX support into J2SE 9
4639363 Java Platform Profiling Architecture (JSR-163) 10
4639373 Revise Java Memory Model (JSR-133) 35
4639378 support for importing constants 28
4639395 support disconnected Rowsets (JSR-114) 25

J2SE 1.5, “Tiger” Release Contents
9.2 Index by Theme

Reliability, Availability and Serviceability -Monitoring and Manageability

4064105 Compile-time type safety with generics (JSR-014) 8
4530538 JVM monitoring and management API 8
4593133 API to generate Java stack traces for all threads 9
4639350 Add JMX support into J2SE 9
4639363 Java Platform Profiling Architecture (JSR-163) 10
4421040 JPDA Add Generics support 11
4876725 Add JMX JSR-160 to J2SE 13
4287596 JPDA pluggable connections and transports 13
4449394 JDI provide a read-only subset of JDI; add can...(); add exceptions 14
4486658 add concurrency library into Java core (JSR-166) 14
4639069 Make javac produce CLDC-style verification tables 15
4674944 On-the wire interoperability 15
4728816 JPDA Add support for enums 16
4633227 JDI spec usage of methods implementing HotSwap feature needs clarification 16
4813046 JVMTI spec requirements for debugging 18

Scalability and Performance

4495742 Add non-blocking SSL/TLS functionality, usable with any I/O abstraction 19
4261803 Need an unsynchronized StringBuffer 19
4667658 JNLP API Enhancements 20
4634457 Support for standard LDAP controls 20

Ease of Development

4636466 Java Language Metadata (Annotation) 22
4401321 Add type-safe enums to Java 23
4944151 (was 4164450) document com.sun.tools.javac.Main for use in a program. 23
4280390 Extended for loops 24
4313885 Scanning and formatting [scanning] 24
4609038 Request auto boxing of primitives in Java 25
4639395 support disconnected Rowsets (JSR-114) 25
4856541 add varargs support 26
4639378 support for importing constants 28
Sun Microsystems Inc. 49 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents

36
Desktop Client

4632193 Swing Skins Look and Feel 30
4666040 Support pack/crunch compression for Java downloads (JSR-200) 30
4686178 Accessibility bugs for tiger 31
4702695 Add new AccessibleRelations, AccessibleRoles, AccessibleState (constants) (TP) 31
4667645 Improve Security Access and Control 32
4702697 Introduce the AccessibleStreamable API method to javax.accessible (TP) 32

Miscellaneous

4533872 Unicode supplementary character support (JSR-204) 34
4640853 Support latest Unicode version 34
4639373 Revise Java Memory Model (JSR-133) 35
4609098 Add Decimal Arithmetic Enhancements into J2SE (JSR-013) 35
4614947 JAXP support for current XML standards, XML/Namespace 1.1, SAX 2.0.1 (JSR 206)
4700777 HTTP client Connect and read timeouts 36
4748085 Support DOM L3 37
4533021 Container needs API to change Z-ordering of children 37
4629589 Add Object Reference Template to ORB 38
4639861 API to test reachability of a host 38
4507539 support using dynamic proxies as RMI stubs 39
4623511 Documented api to call javadoc in process 40
4632213 Swing printing support 40
4633024 Augment Java math libraries with methods from C libm and IEEE 754 41
4635454 Full pluggability for JSSE 41
4635618 LDAP Name Manipulation 42
4696506 HTTP client Improve cookie support 42
4173528 Add a method to generate a UUID (Universal Unique Identifier) 43
4495754 Add library support for common bit manipulation operations 44
4634892 Support for Java SASL API (JSR 28) 44
4635056 Support on-line certificate status checking protocol (OCSP) 45
4696512 HTTP client Improve proxy server configuration and selection 45
4923484 Add RSA-OAEP parameters for XML Encryption 46
Sun Microsystems Inc. 50 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents
9.3 Language Specific Changes

4064105 Compile-time type safety with generics (JSR-014) 8
4280390 Extended for loops 24
4401321 Add type-safe enums to Java 23
4609038 Request auto boxing of primitives in Java 25
4636466 Java Language Metadata (Annotation) 22
4639378 support for importing constants 28
Sun Microsystems Inc. 51 Version :0.47 12/16/03

J2SE 1.5, “Tiger” RI Contents

Sun Microsystems Inc. 52 Version :0.47 12/16/03

9.4 Alphabetical Index

4173528 Add a method to generate a UUID (Universal Unique Identifier) 43
4486658 add concurrency library into Java core (JSR-166) 14
4609098 Add Decimal Arithmetic Enhancements into J2SE (JSR-013) 35
4639350 Add JMX support into J2SE 9
4495754 Add library support for common bit manipulation operations 44
4495742 Add non-blocking SSL/TLS functionality, usable with any I/O abstraction 19
4629589 Add Object Reference Template to ORB 38
4401321 Add type-safe enums to Java 23
4593133 API to generate Java stack traces for all threads 9
4633024 Augment Java math libraries with methods from C libm and IEEE 754 41
4064105 Compile-time type safety with generics (JSR-014) 8
4533021 Container needs API to change Z-ordering of children 37
4623511 Documented api to call javadoc in process 40
4280390 Extended for loops 24
4635454 Full pluggability for JSSE 41
4636466 Java Language Metadata (Annotation) 22
4639363 Java Platform Profiling Architecture (JSR-163) 10
4614947 JAXP support for current XML standards, XML/Namespace 1.1, SAX 2.0.1 (JSR 206) 36
4449394 JDI provide a read-only subset of JDI 14
4633227 JDI spec usage of methods implementing HotSwap feature needs clarification 16
4421040 JPDA Add Generics support 11
4287596 JPDA pluggable connections and transports 13
4530538 JVM monitoring and management API 8
4635618 LDAP Name Manipulation 42
4639069 Make javac produce CLDC-style verification tables 15
4261803 Need an unsynchronized StringBuffer 19
4609038 Request auto boxing of primitives in Java 25
4639373 Revise Java Memory Model (JSR-133) 35
4313885 Scanning and formatting 24
4639395 support disconnected Rowsets (JSR-114) 25
4639378 support for importing constants 28
4634892 Support for Java SASL API (JSR 28) 44
4634457 Support for standard LDAP controls 20
4635056 Support on-line certificate status checking protocol (OCSP) 45
4507539 support using dynamic proxies as RMI stubs 39
4632213 Swing printing support 40
4632193 Swing Skins Look and Feel 30
4533872 Unicode supplementary character support (JSR-204) 34

J2SE 1.5, “Tiger” Release Contents Feature List Change History

abil-

ocu-

men-

nt

rt
10 Feature List Change History

Changes from 0.1 to 0.2:
Added introduction
Removed 4593108 Detect Low memory conditions. This is now part of the Monitoring and Manage
ity JSR request
Removed 4533879 Enhance remote debugging/ Moved to implementation document
Removed 4665444 Improve Java libraries startup time. Moved to implementation document
Removed 4665470 improve memory footprint of the J2SE platform. Moved to implementation d
ment
Removed 4607289 Reduce download size of the JRE. Moved to implementation document
Added 4629583 Bring J2SE ORB up to date with recent OMG specifications. Moved from imple
tation document
Removed 4629608 idlj does not fully support local interfaces. Moved to implementation docume

Changes from 0.2 to 0.22:
Clarified 4639391 update classfile specification
Added details of 4593108 to 4530538 JVM monitoring and management API
Moved 4421040 to RAS theme: JPDA: Add Generics support
Clarified 4638307 Event Dispatch On Main Thread
Moved 4615046 to RAS theme: Provide conditional breakpoints in debug api
Updated 4639069: Make javac produce CLDC-style verification tables
Title of 4614947 updated. Now Support for XML Schema in JAXP (Tiger).
Removed 4607361 API for reading class files without loading them.
Moved 4667645 to desktop client theme: Improve Security Access and Control of Java Web Sta
Updated 4629589: Add Object Reference Template to ORB
Updated 4639861: Title now API to test reachability of a host
Added 4633024: Augment Java math libraries with methods from C libm and IEEE 754
Clarified 4504839: Java libraries should provide support for unsigned integer arithmetic

Changes from 0.22 to 0.3:
Added Summary to each Feature
Added Index by priority and list of language features
Gathered Features 4195444, 4195445, 4199411 and 4232338 into JVMTI feature 4813046
Moved 4635454 JSSE feature from XML theme to Misc theme
Split feature 4614947 jaxp into 2 parts, new feature created is 4748085 for DOM support
Moved 4666040 pack and crunch into desktop client theme (from misc theme)
Moved 4609098 Big decimal to group driver as it is a JSR being planned
Removed 4615533 (3d changes) was a target of opportunity with no resource
Removed 4630118 (weak reference) was a target of opportunity with no resources.
JSRs 199, 200, 201, 202, 203 and 204 have been launched from existing features
Sun Microsystems Inc. 53 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Feature List Change History
Changes from 0.3 to 0.4:
Dropped Feature 4639391, JSR 202 Updates to the classfile specification
Dropped Feature 4313887, JSR 203 More New I/O APIs for the Java Platform
Dropped Feature 4599433, JSR 121 Application Isolation API Specification
Dropped Feature 4607414, JSR 031 XML Data Binding Specification
Dropped Feature 4607419, JSR 101 Java(tm) APIs for XML RPC
Dropped Feature 4635230, JSR 105 XML Digital Signature APIs
Dropped Feature 4635231, JSR 106 XML Digital Encryption APIs
JSR 206 has been launched from feature 4614947
Removed XML and Web services theme, moved feature to theme Miscellaneous
Dropped Feature 4639069 Make javac produce CLDC style verification tables

Target of opportunity drops
part 1
4052440 Pluggable locale support
4504839 Java Libraries should provide support for unsigned integer arithmetic,
4638307 Event dispatch on Main Thread
part 2
4615046 Provide conditional breakpoints in debug api
4059717 JPDA: Want to be able to set program counter in debugger
4287600 JPDA back-end expression evaluation
4362594 JDWP: Need a way to send output and error streams to debugger
4389187 JDI: Let the user specify the current working directory when starting debugger

Promoted from Target of opportunity to Group Driver
4607272 New IO: Support asynchronous I/O
4609038 Request auto boxing of primitives in Java

New additions
4261803 Need an unsynchronized StringBuffer
4856541 add varargs support
4702674 Finish implementing Accessibility on AWT (native method work, keyboard accessibi
4702695 Add new AccessibleRelations, AccessibleRoles, AccessibleState (constants) (TP)
4702697 Introduce the AccessibleStreamable API method to javax.accessible (TP)

Changes from 0.4 to 0.41
Fixed index by priority to reflect changes in 0.4
removed 4667651, 4756982 and 4779551 added in error from implementation doc
4608895 support CIM/WEBM for monitoring and managing the JVM was dropped
Sun Microsystems Inc. 54 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Feature List Change History

p Driv-

ment,

straints
on ta-

tion
es

pport

dition

ill still
4607272 and 4609038 priority updates were not reflected in document, only in change log

Changes from 0.41 to 0.42
Moved indices to the end to speed regeneration
Re-introduced dropped Feature 4639391, JSR 202 Updates to the classfile specification as a Grou
er instead of release driver for verifier updates
Moved Group Driver Feature 4608529 Complete support of ipv6 in J2SE to implementation docu
work scoped to windows updates only, QoS api is not stable
Dropped Group Driver Feature 4607272 New I/O: Support asynchronous I/ due to resource con
Re-introduced dropped Group Driver Feature 4639069 Make javac produce CLDC style verificati
bles for verifier updates
Added Group Driver Feature 4728816 JPDA: Add support for enums
Added Group Driver Feature 4728827 JPDA: Add support for Java Language Metadata
Added Group Driver Feature 4876725: Add JMX JSR-160 to J2SE for remote M&M support

Dropped Target of Opportunity 4050435 Improved interactive console I/O
Dropped Target of Opportunity 4527345 New I/O Add MulticastChannel
Dropped Target of Opportunity 4613021 Provide a high resolution timer in j2se
Dropped Target of Opportunity 4629583 Bring J2SE ORB up to date with recent OMG specifica
Dropped Target of Opportunity 4639867 Migrate networking system properties to user preferenc
Dropped Target of Opportunity 4640520 Refine sun.misc.Service and promote it to java.util
Dropped Target of Opportunity 4640544 New I/O: Complete socket channel functionality
Dropped Target of Opportunity 4640564 Add support for MIME type parsing and construction
Dropped Target of Opportunity 4696485 HTTP client: Support pipelined requests
Dropped Target of Opportunity 4702674 Finish implementing Accessibility on AWT

Description of 4635060 Changed from Support access info & distribute point extensions to Full su
for CRL distribution points extension
Feature 4164450 javac compiler interface doesn’t require JSR 199 changes, only a small api ad

Changes from 0.42 to 0.43

Dropped Group JPDA: Add support for Java Language Metadata Driver. Support for metadata w
be available via java.lang.reflect

4813046: JVMTI spec requirements. Description clarified
4495742: Add non-blocking SSL/TLS functionality. Description clarified to match implementation
4666040: Support Pack/Crunch compression. Updated description to match JSR.
4686178: Accessibility bugs for tiger. Updated with additional items from IBM
4609098: Add decimal arithmetic enhancements, description updated from JSR
4748085: Support DOM L3. Tidied description
4632213: Swing printing support. Reduced scope to Jtable component
Sun Microsystems Inc. 55 Version :0.47 12/16/03

J2SE 1.5, “Tiger” Release Contents Feature List Change History

anges

tables

wever
1.5 by

docu-

sion
4633024: Augment Java math libraries. Updated list of math functions
4173528: Add a method to generate a UUID. Minor clarifications to the description

Dropped Target of Opportunity 4635060: Full support for CRL distribution points extension

Changes from 0.43 to 0.44

Dropped Group Driver 4639391, JSR 202 Updates to the classfile specification. Minor attribute ch
required for language changes will need to be document as part of the maintenance review
Also dropped related Group Driver Feature 4639069 Make javac produce CLDC style verification
for verifier updates

4615460: Enhancements to Swing/JFileChooser for IDE tools dropped from the feature list. Ho
components of the feature, (1e) repeat keyboard navigation and (2) file renaming, are fixed in
work done by bugs 4654916 and 4887433

4813046: JVMTI spec requirements for debugging, minor clarification to jvmti debug bugs

Feature 4164450, originally JSR 199 and rescoped in version 0.42 is now replaced with 4944151
ment com.sun.tools.javac.Main for use in a program.

Addition of Target of Opportunity 4923484: Add RSA-OAEP parameters for XML Encryption

Changes from 0.44 to 0.45

Included Open Issues page
Update JSR status at front

Changes from 0.45 to 0.47

Clarified resolution time for open issues.
Included additional note for open issues regarding ability of licensees to ship a later CORBA ver
Sun Microsystems Inc. 56 Version :0.47 12/16/03

	Abstract
	1 Introduction
	1.1 Themes
	1.1.1 Reliability, Availability, Serviceability - Monitoring and Manageability
	1.1.2 Performance and Scalability
	1.1.3 Ease of Development
	1.1.4 Desktop Client

	1.2 Granularity
	1.3 Prioritizing Features
	1.3.1 Release Drivers
	1.3.2 Group Drivers
	1.3.3 Targets of Opportunity (also known as “General Features”)

	1.4 Component JSRs

	2 Index by Priority
	Release Drivers
	Group Drivers
	Targets of Opportunity

	3 Reliability, Availability and Serviceability - Monitoring and Manageability
	Compile-time type safety with generics (JSR-014)
	JVM monitoring and management API
	API to generate Java stack traces for all threads
	Add JMX support into J2SE
	Java Platform Profiling Architecture (JSR-163)
	JPDA: Add Generics support
	Add JMX JSR-160 to J2SE
	JPDA pluggable connections and transports
	JDI: provide a read-only subset of JDI; add can...(); add exceptions
	add concurrency library into Java core (JSR-166)
	Make javac produce CLDC-style verification tables
	On-the wire interoperability
	JPDA: Add support for enums
	JDI spec: usage of methods implementing HotSwap feature needs clarification
	JVMTI spec requirements for debugging

	4 Scalability and Performance
	Add non-blocking SSL/TLS functionality, usable with any I/O abstraction
	Need an unsynchronized StringBuffer
	JNLP API Enhancements
	Support for standard LDAP controls

	5 Ease of Development
	Java Language Metadata (Annotation)
	Add type-safe enums to Java
	(was 4164450) document com.sun.tools.javac.Main for use in a program.
	Extended for loops
	Scanning and formatting [scanning]
	Request auto boxing of primitives in Java
	support disconnected Rowsets (JSR-114)
	add varargs support
	support for importing constants

	6 Desktop Client
	Swing Skins Look and Feel
	Support pack/crunch compression for Java downloads (JSR-200)
	Accessibility bugs for tiger
	Add new AccessibleRelations, AccessibleRoles, AccessibleState (constants) (TP)
	Improve Security Access and Control
	Introduce the AccessibleStreamable API method to javax.accessible (TP)

	7 Miscellaneous
	Unicode supplementary character support (JSR-204)
	Support latest Unicode version
	Revise Java Memory Model (JSR-133)
	Add Decimal Arithmetic Enhancements into J2SE (JSR-013)
	JAXP support for current XML standards, XML/Namespace 1.1, SAX 2.0.1 (JSR 206)
	HTTP client: Connect and read timeouts
	Support DOM L3
	Container needs API to change Z-ordering of children
	Add Object Reference Template to ORB
	API to test reachability of a host
	support using dynamic proxies as RMI stubs
	Documented api to call javadoc in process
	Swing printing support
	Augment Java math libraries with methods from C libm and IEEE 754
	Full pluggability for JSSE
	LDAP Name Manipulation
	HTTP client: Improve cookie support
	Add a method to generate a UUID (Universal Unique Identifier)
	Add library support for common bit manipulation operations
	Support for Java SASL API (JSR 28)
	Support on-line certificate status checking protocol (OCSP)
	HTTP client: Improve proxy server configuration and selection
	Add RSA-OAEP parameters for XML Encryption

	8 Open Issues
	9 Feature Index
	9.1 Index by Feature ID
	9.2 Index by Theme
	Reliability, Availability and Serviceability -Monitoring and Manageability
	Scalability and Performance
	Ease of Development
	Desktop Client
	Miscellaneous

	9.3 Language Specific Changes
	9.4 Alphabetical Index

	10 Feature List Change History
	Changes from 0.1 to 0.2:
	Changes from 0.2 to 0.22:
	Changes from 0.22 to 0.3:
	Changes from 0.3 to 0.4:
	Changes from 0.4 to 0.41
	Changes from 0.41 to 0.42
	Changes from 0.42 to 0.43
	Changes from 0.43 to 0.44
	Changes from 0.44 to 0.45
	Changes from 0.45 to 0.47

