
JSR174 – Public Draft 0.99.7 Page 1 of 22  25-Sep-03 

 

 

 

JSR-174 - Requirements for the Monitoring and 
Management Specification for the JavaTM Virtual 
Machine.  

 

PUBLIC DRAFT 0.99.7 (25-Sep-03)



JSR174 – Public Draft 0.99.7 Page 2 of 22  25-Sep-03 

Contents 

1 Abstract ..................................................................................................................5 
2 Motivation & Goals ...............................................................................................5 
3 Target Audiences ...................................................................................................6 

3.1 Internal Monitoring and Management ...........................................................6 
3.2 External Monitoring and Management ..........................................................6 

4 Relationship of JSR174 with JSR163 ....................................................................7 
5 Convention.............................................................................................................7 
Part 1. General Requirements ........................................................................................8 
6 Main Characteristics ..............................................................................................8 

6.1 Monitoring Model..........................................................................................8 
6.2 Low Overhead................................................................................................8 
6.3 On-demand Monitoring..................................................................................8 
6.4 24x7 Operations, No Restart ..........................................................................8 
6.5 Multiple Management Clients Support..........................................................8 
6.6 Low Memory Detection Support ...................................................................8 
6.7 Deadlock Detection Support ..........................................................................9 
6.8 Remote JVM Monitoring and Management Support.....................................9 
6.9 SNMP Support ...............................................................................................9 
6.10 Minimise "Heisenberg Principle” Effects for Application Self-monitoring..9 
6.11 Extensions Mechanism ..................................................................................9 

7 JVM Data for Monitoring and Management .........................................................9 
7.1 OS Resources .................................................................................................9 
7.2 Operating System, Runtime and JIT Compiler Properties...........................10 
7.3 Compilation, Execution and Synchronisation Subsystems..........................10 
7.4 Class Loading Subsystem ............................................................................12 
7.5 Memory Subsystem .....................................................................................12 

Part 2. Java Language Application Programming Interface ........................................17 
8 Requirements for the Java API ............................................................................17 

8.1 Production Environment ..............................................................................17 
8.2 Access to JVM Monitoring Data .................................................................17 
8.3 On-Demand Monitoring...............................................................................17 
8.4 24x7 Operations, No Restart ........................................................................17 
8.5 Multi-Thread Safe ........................................................................................17 
8.6 Optional Data/Operation..............................................................................17 
8.7 Extensible Mechanism.................................................................................17 
8.8 JMX MBeans ...............................................................................................17 

Part 3. Native Interface ................................................................................................18 
9 General requirements for the Java native interface..............................................18 

9.1 Dynamic Load of Native Agents and Late Binding.....................................18 
9.2 Support for Multiple Concurrent Agents .....................................................18 
9.3 24x7 Operation without Restarting the JVM ...............................................18 
9.4 Extensions capabilities .................................................................................18 
9.5 Rules for writing agent code ........................................................................19 

10 Additional requirements.......................................................................................19 
10.1 Operating System, Runtime and JIT Compiler Properties...........................19 
10.2 Execution and Synchronization Subsystem.................................................19 
10.3 Class Loading Subsystem ............................................................................19 
10.4 Memory Subsystem .....................................................................................20 



JSR174 – Public Draft 0.99.7 Page 3 of 22  25-Sep-03 

Part 4. Appendixes .......................................................................................................21 
Appendix A. Expert Group Collaboration Agreement ................................................21 
Appendix B. Trademarks .............................................................................................22 
 



JSR174 – Public Draft 0.99.7 Page 4 of 22  25-Sep-03 

Tables 

Table 7.2-1 OS and Runtime Properties ......................................................................10 
Table 7.3-1 Compilation, execution and Synchronization Subsystem ........................11 
Table 7.4-1 Class Loading Subsystem.........................................................................12 
Table 7.5-1 Memory Subsystem..................................................................................16 
Table 10.1-1 Native Interface - OS, Runtime and JIT properties ................................19 
 



JSR174 – Public Draft 0.99.7 Page 5 of 22  25-Sep-03 

1 Abstract 

This document describes the requirements for the Monitoring and 
Management Specification for the JavaTM Virtual Machine (JVMTM)1. JSR174 
requires that both the native interface as well as the Java programming 
language interface be defined for JVM monitoring and management. This 
document is structured as three technical parts plus two administrative 
appendixes. The technical parts are: 

• Part 1 of this document describes, in a generic and platform neutral 
style, all the requirements applicable to both the Java programming 
language interface and the native interface. 

• Part 2 describes the requirements specific to the Java programming 
language interface. 

• Part 3 describes the requirements specific to the native interface. 

This specification is intended to be used as guidelines for the development 
requirements of the monitoring and management portion of the JVMTI 
specification and related API being proposed by the JSR-163 “Java TM 
Platform Profiling Architecture”. 

2 Motivation & Goals 

Modern enterprise solutions are complex and often comprise a stack of 
different distributed products, many of which are Java platform applications. In 
such an environment, the task of monitoring and managing the solution is very 
complex and requires a collection of probes and adapters in order to collect 
the necessary data. 

Monitoring and understanding the overall health of the JVM is an important 
contributor to the management of the solution, and the monitoring should be 
as non-intrusive as possible in order not to alter the original characteristics of 
the solution. 

JVM monitoring and management will be most useful in customer production 
environments where it will be used to gather information about the health of 
the JVM and the application and to dynamically select/configure data 
collection.  

The current specification for the JVM does not include any lightweight 
standard interface for the monitoring of its health indicators nor for the 
management of some of its run-time characteristics.  

The main goal of this specification is to provide the necessary guidelines and 
recommendations for the definition of a set of APIs to enable the monitoring 
and management of the JVM. This specification will _not_ propose any 

                                                 
1 The terms “Java virtual machine” and “JVM” mean a virtual machine for the JavaTM platform. 



JSR174 – Public Draft 0.99.7 Page 6 of 22  25-Sep-03 

interfaces to monitor or manage applications, nor to supply a higher level 
abstraction to monitoring and management. Monitoring and management 
intelligence shall be provided by another layer yet to be defined. The 
expectation is that monitoring and management intelligence shall be provided 
by 3rd party software vendors. 

In essence, JSR174 is about the definition of the data required for the 
lightweight monitoring and the management of the Java virtual machine. 

3 Target Audiences 

The target audiences of the applications using JVM data for monitoring and 
management fall into the following groups: 

• Internal monitoring and management 
• External monitoring and management 

3.1 Internal Monitoring and Management 

Java platform applications require JVM data for self monitoring and 
management of the running JVM.  

3.2 External Monitoring and Management 

The target audiences of this group are as follows:  

3.2.1 Management systems, end users and administrators 

Management systems require the JVM data to help end users and 
administrators to perform continuous production monitoring of an 
application in the deployed environment.  

3.2.2 IT organization and Support Engineers 

IT organization and support engineers will use the JVM data to help 
identify and troubleshoot any problems occurring in the production 
environment.  These could be configuration issues, performance 
bottlenecks or bugs in the applications.  Support engineers can also use 
JVM implementation specific data to better understand the behaviour of 
a specific JVM implementation.    

3.2.3 Development organization 

When a problem occurs in the production environment, it may be 
necessary to involve the development organization to help with 
diagnosis.  The developers often request more detailed JVM data from 
the production environment.  Such data may be very specific to the JVM 
implementation. 



JSR174 – Public Draft 0.99.7 Page 7 of 22  25-Sep-03 

4 Relationship of JSR174 with JSR163 

The Expert Groups for JSR 174 and JSR 163 have agreed that due to the 
functional overlap and target audience of the two JSRs, they should share the 
same infrastructure for surfacing as well as producing the monitoring data and 
managing the JVM. 

• JSR-174 will define the requirements for JVM monitoring and 
management.  These requirements will be incorporated into JSR-163. 

• JSR-174 will pre-requisite JSR-163 JVMTI (with requirements).  
• JSR-163 will provide the interface, Reference Implementation and Test 

Compatibility Kit to meet the needs of monitoring, management and 
profiling.  

5 Convention 

The monitoring data and metrics are classified as follows: 

• Mandatory 

Data and metrics are fully specified and supported by all JVM 
implementations that conform to the specification. 

• Optional 

Data and metrics are fully specified but may only be supported by 
some JVM implementations.  A capabilities query mechanism shall be 
used to determine which data and metrics are supported.  Optional 
data allows users to easily build a modular system to support multiple 
JVM’s.  

• Platform Specific 

Data and metrics are not specified in this document. An extensions 
mechanism shall be used to query a given JVM for its platform specific 
support. 



JSR174 – Public Draft 0.99.7 Page 8 of 22  25-Sep-03 

Part 1. General Requirements  

The two most important characteristics for monitoring of production 
environments (24x7 operations) are:  

• Non-intrusiveness (or as lightweight as possible)  
• Low data rate  

Monitoring should be used to obtain some indication of how well the JVM is 
functioning and should provide the necessary data to be used to trigger further 
investigation. Anything beyond that should be covered by other activities such 
as profiling and/or debugging and/or problem determination.  

The specification shall define both mandatory and optional requirements for 
monitoring and management of a JVM implementation. 

6 Main Characteristics  

6.1 Monitoring Model  

The monitoring of low frequency events is usually associated with 
synchronous notifications while high frequency events are usually 
summarized in counters and obtainable through polling.  

6.2 Low Overhead 

There should be no more than 1% performance overhead as measured by 
standard benchmarks (specJBB, specJVM, ECPerf, etc). 

6.3 On-demand Monitoring 

Event generation and counters can be enabled/disabled/reset on demand. 

6.4 24x7 Operations, No Restart 

No restart shall be required for attaching/enabling/disabling/resetting the 
monitoring.  

6.5 Multiple Management Clients Support 

Concurrent monitoring and management by more than one client shall be 
supported. 

6.6 Low Memory Detection Support 

A mechanism to allow an application to detect a JVM in a low memory 
situation shall be provided.  



JSR174 – Public Draft 0.99.7 Page 9 of 22  25-Sep-03 

The mechanism is not intended to allow an application to manage itself and 
recover from a low memory condition, for example to free up memory used by 
the application. Instead, the kind of action an application or its external agent 
may take would be to stop distributing any work to a JVM when it detects that 
JVM is in a low memory situation. Furthermore, there is no intent to define 
timely notification, due to the dynamic nature of a Java platform application. 

6.7 Deadlock Detection Support 

A mechanism and necessary monitoring data to allow an application or 
management client to detect application deadlock shall be provided. 

6.8 Remote JVM Monitoring and Management Support 

JavaTM Management Extension (JMX) MBean for the monitoring and 
management of the JVM shall be provided. 

6.9 SNMP Support 

An SNMP MIB definition to enable SNMP management applications to 
monitor and manage the JVM shall be provided. 

6.10 Minimise "Heisenberg Principle” Effects for Application 
Self-monitoring 

Special consideration shall be given to the implementation of the Monitoring 
and Management API in order to minimise “Heisenberg Principle” effects. 

6.11 Extensions M echanism 

A mechanism to allow JVM vendors to provide extensions for platform specific 
monitoring data and management capabilities shall be provided. 

The JVM Tools Interface currently being specified on JSR-163 has the 
necessary provision for extensions by vendors. 

7 JVM Data for Monitoring and Management 

This chapter describes and categorizes the requirement for data and metrics 
for the JVM health indicators that are to be monitored.  

7.1 OS Resources 

There has been a growing interest in surfacing some level of information 
about the OS resources a given JVM is consuming as well as changes in the 
available OS resources. It might become a little challenging to create the 
necessary common abstraction to map OS resources from the various OS in 
the market. Our recommendation is to use as much as possible the 



JSR174 – Public Draft 0.99.7 Page 10 of 22  25-Sep-03 

infrastructure provided by the OS to monitor the required data but have the 
necessary mechanism to allow platform specific extensions. 

7.2 Operating System, Runtime and JIT Compiler Properties 

This category comprises the information needed to identify the Operating 
System platform, the JVM and JIT Compiler implementations, the command 
line options and arguments. 

Mandatory Optional 

OS Properties 

• os.name 
• os.version 
• os.arch  

JVM system properties 

• java.vm.vendor 
• java.vm.version 
• java.vm.name 
• java.vm.specification.version 
• java.vm.specification.vendor 
• java.vm.specification.name 
• java.class.path 
• java.library.path 

Compilation/JIT properties 

• name of the compiler 

JVM Startup options 

 

Boot class path 
 
 

Table 7.2-1 OS and Runtime Properties 

7.3 Compilation, Execution and Synchronisation Subsystems  

Monitoring data from the execution and synchronisation subsystems provide 
valuable information about the state, properties, counting of threads, thread 
CPU utilization, JIT compilation time and also valuable information for the 
identification of deadlocks and hot-locks.  

First of all, we should keep in mind that there are different implementations of 
the JVM threading and locking infrastructure and the cost for providing 
thread/locking enumeration/timing/counting may vary considerably. We would 
like the provision of some sort of object locking (a.k.a. monitor lock) statistics 
that would enable us to identify that contention is taking place. 



JSR174 – Public Draft 0.99.7 Page 11 of 22  25-Sep-03 

A thread will be uniquely identified during its existence. A given thread’s 
identifier might be reused after a given thread terminates. it will be the 
responsibility of the monitoring agents/code to differentiate a thread that has 
been destroyed from a newly created one.  

 

Mandatory Optional 

Counters and accumulators 

• Total number of Java threads created and 
started since the JVM started  

• Current number/list of live Java threads  
• Peak number of live Java threads 
• Current number of Daemon threads 

 

Thread general info  

• Thread Identifier (may not be unique over the 
lifetime of a JVM run)   

• Thread state (JVM thread state, not necessarily 
OS thread state) 

o Created but not-yet -started 
o Running 
o Blocked on entering a monitor 
o Blocked waiting on a monitor 
o Suspended 
o Terminated 
o Running on JNI code 
o Undefined 

• The monitor a thread is blocked on, if any. 
• The thread which owns the monitor lock for a 

given object 
• Total number of contentions (number of times a 

given thread was blocked to enter or waiting on 
a monitor.)  

• Thread stack trace 

Thread general info 

• Thread state - waiting on I/O 
• Total approximated accumulated 

elapsed time spent by given thread 
that blocked on monitors or waited 
on monitors (Disabled by default) 

• Total CPU time consumed by a 
given thread. 

JVM Uptime 

• Approximate total time since the JVM started 

JIT Compilation Time 

• Approximate total accumulated 
time spent in JIT compilation since 
the JVM started 

 Manageable attribute 

• Enable/disable thread contention 
monitoring 

• Enable/disable thread CPU time 
measurement. 

Table 7.3-1 Compilation, execution and Synchronization Subsystem 



JSR174 – Public Draft 0.99.7 Page 12 of 22  25-Sep-03 

7.4 Class Loading Subsystem 

Monitoring data from the class loading subsystem can be grouped on a class 
loader basis or on a class basis. Either way should provide the necessary 
data to allow a management application to infer the health of the class loading 
subsystem. This JSR will specify class basis grouping as the general 
requirement. 

Mandatory Optional 

Counters and accumulators 

• Current number of non-array classes loaded in 
the JVM 

• Total number of non-array classes loaded 
since the JVM started. 

• Total number of non-array classes unloaded 
since the JVM started. 

Manageable attributes 

• Turn on/off verboseness 

 

Table 7.4-1 Class Loading Subsystem 

7.5 Memory Subsystem 

The memory subsystem is responsible for managing and accounting for all the 
memory in use by the JVM. As the implementation of the memory subsystem 
varies from vendor to vendor, we propose a common abstract model for 
describing allocated memory and the behaviour of the memory subsystem. 

The JVM memory subsystem manages all types of memory resources, but in 
most if not all the cases, they can be divided into two major categories: heap 
and non-heap memory. 

7.5.1 Heap 

The Java virtual machine usually has a heap that is shared among all 
threads. The heap is the runtime data area from which memory for all 
class instances and arrays is allocated. It is created at Java virtual 
machine start-up. Heap memory for objects is reclaimed by an automatic 
memory management system known as garbage collector.  

The heap may be of a fixed size or may expand and shrink. The memory 
for the heap does not necessarily need to be contiguous.  



JSR174 – Public Draft 0.99.7 Page 13 of 22  25-Sep-03 

7.5.2 Non-heap Memory 

The Java virtual machine also manages memory resources other than 
the heap, these are usually referred as non-heap memory.  

The usage of the non-heap memory is implementation specific and is 
usually associated with the internal processing of the JVM (JIT working 
buffers, JIT code buffers, etc). In addition, some JVM implementations 
might also store runtime constant pool, field and method data, and the 
code for methods and constructors in what is known as “method area” in 
the non-heap memory. 

The method area is logically part of the heap but a JVM implementation 
may choose not to either garbage collect or compact it. Similar to the 
heap, the method area may be of a fixed size or may be expanded and 
shrunk. The memory for the method area does not necessarily need to 
be contiguous.  

7.5.3 Common Abstract Model 

Memory pools and memory managers are the abstract entities for 
monitoring and management of the JVM’s memory subsystem. 

The JVM has at least one memory pool and it may create or remove 
memory pools during execution. A memory pool can be part of the heap 
or part of the non-heap memory. 

The memory manager is responsible for managing one or more memory 
pools. The garbage collector is one type of memory manager 
responsible for reclaiming memory occupied by unreachable objects. 
The JVM may have one or more memory managers. It may add or 
remove memory managers during execution. A given memory pool can 
be managed by more than one memory manager.   

The memory pool has five attributes: 

• initSize 

Initial amount of memory requested by the JVM, from the 
operating system, for a given memory pool. The JVM may 
request additional memory from the operating system later when 
appropriate. Its value may be undefined. 

• Used 

The amount of memory currently in use. 

• Committed 



JSR174 – Public Draft 0.99.7 Page 14 of 22  25-Sep-03 

initSize 

used 

committed 

maxSize 

The amount of memory that is guaranteed to be available for 
use by the JVM. The amount of committed memory may change 
over time (increase or decrease). It is guaranteed to be greater 
than or equal to initSize. 

• maxUsed 

The maximum amount of memory ever used since the given 
memory pool was created. 

• maxSize 

The maximum amount of memory that can be used for a given 
memory pool. The maximum amount of memory for memory 
management could be less than the amount of committed 
memory. Its value may be undefined. 

This picture depicts a memory pool with maxSize > committed. 

 

7.5.4 Examples 

A Java virtual machine exposes three memory pools and two memory 
managers for monitoring and management:  

• memory pool A for object allocation - managed by mark-sweep-
compact collector  

• memory pool B for method area - managed by mark-sweep-
compact collector 

• memory pool C for keep compiled native code used by JIT - 
managed by malloc/free manager 



JSR174 – Public Draft 0.99.7 Page 15 of 22  25-Sep-03 

Memory pool A belongs to heap memory.  Memory pool B and C belong 
to non-heap memory.  Mark-sweep-compact collector is one memory 
manager managing pools A & B.  Malloc/free memory manager 
manages pool C. 



JSR174 – Public Draft 0.99.7 Page 16 of 22  25-Sep-03 

 

Mandatory Optional 

Memory Pool ( list of memory pools which may vary 
over time) 

• Name (not necessarily unique) 
• Membership 

o heap memory 
o non-heap memory  

• Init size (may be unspecified) 
• Used size 
• Committed size 
• Max size (may be unspecified) 
• Max used size  
• Alarm Threshold (default is platform specific) 
• List of memory managers managing this 

memory pool 

Memory Manager (List of memory managers which 
may vary over time) 

• Name  (not necessarily unique) 
• List of memory pools managed by this memory 

manager 

Heap 

• initial amount of memory that the JVM allocates 
• amount of used memory 
• amount of committed memory (memory 

guaranteed to be available for the JVM to use) 
• maximum amount of memory that the JVM will 

attempt to use 
• Snapshot of the number of objects pending 

finalization (approx. value) 

Garbage Collector  (one kind of Memory Manager) 

(some of this data may be undefined)  

• Current number of collections  
• Total accumulated elapsed time spent in GC 

Manageable Attributes 

• Turn on/off -verbose:gc 
• Set alarm threshold for a given memory pool 
• System.gc 

Low memory detection support:  

• Heap Alarm 

The alarm will be triggered when 
the amount of available memory of 
any one of the memory pools of the 
heap is insufficient as per user 
defined threshold. 

 

• Non-heap Alarm 

The alarm will be triggered when 
the amount of available memory of 
any one of the memory pools of the 
non-heap is insufficient as per user 
defined threshold. 

Table 7.5-1 Memory Subsystem 



JSR174 – Public Draft 0.99.7 Page 17 of 22  25-Sep-03 

 Part 2. Java Language Application Programming 
Interface 

This section describes the requirements for the Java Language API for 
accessing the JVM monitoring and management data . 

8 Requirements for the Java API  

8.1 Production Environment 

The interface will be used in the production environment. 

8.2 Access to JVM Monitoring Data 

The interface shall provide access to the JVM monitoring data defined in 
Chapter 7. 

8.3 On-Demand Monitoring 

The interface shall support on-demand monitoring to enable and disable 
costly data collection. 

8.4 24x7 Operations, No Restart 
No restart shall be required for enabling, disabling and resetting the data 
monitoring. 

8.5 Multi-Thread Safe 
The interface shall support use by multiple threads. 

8.6 Optional Data/Operation 

The interface shall provide a mechanism to query whether or not a given 
operation is supported by a JVM. 

8.7 Extensible Mechanism 

The interface shall allow a vendor to provide their platform-specific support 
through an extensible mechanism. 

8.8 JMX MBeans 

JMX MBeans shall be defined to enable remote JVM monitoring and 
management. 



JSR174 – Public Draft 0.99.7 Page 18 of 22  25-Sep-03 

Part 3. Native Interface 

This section describes the general characteristics of the native interface for 
externalizing the JVM monitoring and management data and for exporting 
management knobs and buttons. The requirements and characteristics 
listed in this section are additional to the general requirements describe 
in “Part 1” of this document. The minimum requirement is for native 
interface to provide the necessary APIs to externalize the same list of 
monitoring data and controls required in “Part 1” and/or to enable counters 
and accumulators to be computed by a native agent. JVM implementations 
may provide some of these data and controls by use of the self-describing 
extensions mechanism present in the JVM Tools Interface (JVMTI) currently 
being specified on JSR163. Both “Part 1” and “Part 3” provide guidelines for 
the interfaces to be implemented in the JVMTI. 

9 General requirements for the Java native interface 

9.1 Dynamic Load of Native Agents and Late Binding 

The native interface shall support the late binding of native agents without 
restarting the JVM.  

The JVM monitoring and management capabilities shall all be available after 
the JVM initializes. 

9.2 Support for Multiple Concurrent Agents 

The native interface shall support connection by multiple native agents and 
guaranteed correct coordination. 

The native interface shall support multi-thread safe operation. 

The native interface shall provide APIs to aid the coordination of multiple 
agents (e.g. raw monitors). 

9.3 24x7 Operation without Restarting the JVM 

The native interface shall support enable/disable/reset data collection without 
the need to restart the JVM. 

9.4 Extensions capabilities 

The native interface shall support a query mechanism for native  agents to 
discover platform specific extensions supported by a given JVM. 



JSR174 – Public Draft 0.99.7 Page 19 of 22  25-Sep-03 

9.5 Rules for writing agent code 

Rules and best practice programming guidelines shall be provided to help end 
users and tools vendors wanting to exploit the JVM monitoring and 
management capabilities. 

10  Additional requirements 

10.1 Operating System, Runtime and JIT Compiler Properties 

The minimum requirement is for the same list of system properties required in 
“Part 1 (Chapter 7.2)” to be available through the native interface. Ideally all 
the systems properties supported by a given JVM should be available. 

 

Interface Requirement JVMTI supported 

Mandatory 

System Properties 

• List of “System Properties” keys supported on 
a given JVM 

• System Property value for a given key 

YES 

• GetSystemProperties 
• GetSystemProperty 

Optional 

Boot class path 

No 

 

Table 10.1-1 Native Interface - OS, Runtime and JIT properties 

10.2 Execution and Synchronization Subsystem 

Thread lifecycle in conjunction with object locking (a.k.a. monitor lock) data 
can be a powerful tool for identifying that contention is taking place and also to 
derive thread dependency (thread graph per monitor).  

Thread lifecycle can be derived from thread start/blocked/end events and 
monitor lock data shall be obtained through a query mechanism. This 
functionality is currently provided by the JVMTI spec.  

10.3 Class Loading Subsystem 

The native interface shall implement the functionality necessary for the 
monitoring of lifecycle of classes, class identification and classloader 
statistics.  

Data concerning the class loading subsystem can be grouped on a 
classloader basis and/or class basis.  Lifecycle shall be derived from data 



JSR174 – Public Draft 0.99.7 Page 20 of 22  25-Sep-03 

surfaced through a notification mechanism. Statistics and aggregations should 
be computed by the agent using data collected through query.  Query only 
happens as result of a request therefore any overhead can be at least 
managed. This functionality is currently provided by the JVMTI spec. 

10.4 Memory Subsystem  

Currently, the JVMTI support for accessing monitoring data from the memory 
subsystem is not very flexible and assumes a given implementation. As the 
memory manager technology continues to evolve and as different JVM 
vendors can potentially implement _very_ different memory models and 
memory managers, our recommendation is for vendors provide their own 
metric through the JVMTI extensions mechanism. 

 



JSR174 – Public Draft 0.99.7 Page 21 of 22  25-Sep-03 

Part 4. Appendixes 

Appendix A. Expert Group Collaboration Agreement 
 

JSR 174 Expert Group Participation Rules  
 
Purpose:  
The purpose of JSR 174 is to develop the Monitoring and Management 
Requirements Specification for the JavaTM Virtual Machine. To do that, the 
members of the expert group will have to exchange information, ideas, 
documents, code, etc.  Sun has represented to IBM that it has agreements with 
each of you, or with the companies that you represent, to enable your 
participation in this expert group.  According to Sun, these agreements provide 
licenses to any contributions that are made sufficient for IBM to produce the 
Requirements Specification for this JSR and license it under the proposed terms.  
 
General collaboration terms:  
Due to the nature of this expert group, no information or material which is 
considered confidential to you or your employer should be submitted as a 
contribution.  All information or material provided to this group will be 
considered non-confidential.  
 
Licensing Terms:  
This draft specification is not final.  Any final specification that may be 
published will likely contain differences, some of which may be substantial.  
Publication of this draft specification is not intended to provide the basis for 
implementations of the specification.  This draft specification is provided AS IS, 
with all faults.  THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, 
INCLUDING WARRANTIES OF CONDITION OF TITLE OR NON-
INFRINGEMENT.  You may copy and display this draft specification provided 
that you include this notice and any existing copyright notice.  Except for the 
limited copyright license granted above, there are no other licenses granted to 
any intellectual property owned or controlled by any of the authors or developers 
of this material.  No other rights are granted by implication, stopple or otherwise. 

  
 



JSR174 – Public Draft 0.99.7 Page 22 of 22  25-Sep-03 

Appendix B. Trademarks 

Java and all Java-based trademarks and logos are trademarks or registered 
trademarks of Sun Microsystems, Inc. in the United States and other 
countries. 

 

 


