
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

JavaTM Management Extensions
(JMXTM) Remote API 1.0

Specification

FinalRelease

October 2003

JMXTM Remote API Specification (“Specification”)

Version: 1.0
Status: FCS
Release: October 17, 2003

Copyright 2003 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

NOTICE; LIMITED LICENSE GRANTS

Sun Microsystems, Inc. (“Sun”) hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without
the right to sublicense), under the Sun’s applicable intellectual property rights to view, download, use and reproduce the Specification
only for the purpose of internal evaluation, which shall be understood to include developing applications intended to run on an
implementation of the Specification provided that such applications do not themselves implement any portion(s) of the Specification.

Sun also grants you a perpetual, non-exclusive, worldwide, fully paid-up, royalty free, limited license (without the right to sublicense)
under any applicable copyrights or patent rights it may have in the Specification to create and/or distribute an Independent
Implementation of the Specification that: (i) fully implements the Spec(s) including all its required interfaces and functionality; (ii)
does not modify, subset, superset or otherwise extend the Licensor Name Space, or include any public or protected packages, classes,
Java interfaces, fields or methods within the Licensor Name Space other than those required/authorized by the Specification or
Specifications being implemented; and (iii) passes the TCK (including satisfying the requirements of the applicable TCK Users Guide)
for such Specification. The foregoing license is expressly conditioned on your not acting outside its scope. No license is granted
hereunder for any other purpose.

You need not include limitations (i)-(iii) from the previous paragraph or any other particular “pass through” requirements in any
license You grant concerning the use of your Independent Implementation or products derived from it. However, except with respect
to implementations of the Specification (and products derived from them) that satisfy limitations (i)-(iii) from the previous paragraph,
You may neither: (a) grant or otherwise pass through to your licensees any licenses under Sun’s applicable intellectual property rights;
nor (b) authorize your licensees to make any claims concerning their implementation’s compliance with the Spec in question.

For the purposes of this Agreement: “Independent Implementation” shall mean an implementation of the Specification that neither
derives from any of Sun’s source code or binary code materials nor, except with an appropriate and separate license from Sun, includes
any of Sun’s source code or binary code materials; and “Licensor Name Space” shall mean the public class or interface declarations
whose names begin with “java”, “javax”, “com.sun” or their equivalents in any subsequent naming convention adopted by Sun
through the Java Community Process, or any recognized successors or replacements thereof.

This Agreement will terminate immediately without notice from Sun if you fail to comply with any material provision of or act outside
the scope of the licenses granted above.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors is granted hereunder. Sun,
Sun Microsystems, the Sun logo, Java, JMX, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS IS”. SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT, THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR
THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement
any portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW
VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification
will be governed by the then-current license for the applicable version of the Specification.
2

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF
SUN AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) your use of the
Specification; (ii) the use or distribution of your Java application, applet and/or clean room implementation; and/or (iii) any claims
that later versions or releases of any Specification furnished to you are incompatible with the Specification provided to you under this
license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rights in the Specification and accompanying documentation shall be
only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD)
acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your use of the Specification
(“Feedback”). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is provided on a non-
proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable license,
with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation the Feedback
for any purpose related to the Specification and future versions, implementations, and test suites thereof.

(LFI#135575/Form ID#011801)
3

4

Contents

1. Introduction 11

1.1 Purpose of This Standard 11

1.2 Required Version of the JMX Specification 12

1.3 History 12

2. Connectors 15

2.1 Sessions and Connections 16

2.2 Connection Establishment 16

2.3 MBean Server Operations Through a Connection 17

2.4 Adding Remote Listeners 18

2.4.1 Filters and Handbacks 18

2.4.2 Removing Listeners 19

2.4.3 Notification Buffer 20

2.4.4 Getting Notifications From the Notification Buffer 21

2.5 Concurrency 22

2.6 Normal Termination 22

2.7 Abnormal Termination 23

2.7.1 Detecting Abnormal Termination 23

2.8 Connector Server Addresses 24

2.9 Creating a Connector Client 25

2.9.1 JMXConnectorFactory 25
Contents 5

2.9.2 Connection Stubs 26

2.9.3 Finding a Server 26

2.10 Creating a Connector Server 27

2.10.1 Publishing a Server 28

2.11 Class Loading 28

2.11.1 Class Loading on the Client End 29

2.11.2 Class Loading on the Server End 30

2.12 Connector Server Security 32

2.12.1 Subject Delegation 32

3. RMI Connector 33

3.1 RMI Transports 33

3.2 Mechanics of the RMI Connector 34

3.2.1 Wrapping the RMI Objects 36

3.2.2 RMIConnection 36

3.2.3 Notifications 37

3.3 How to Connect to an RMI Connector Server 37

3.4 Basic Security With the RMI Connector 38

3.4.1 How Security Affects the RMI Connector Protocol 39

3.4.2 Achieving Real Security 39

3.5 Protocol Versioning 40

4. Generic Connector 41

4.1 Pluggable Transport Protocol 41

4.2 Pluggable Object Wrapping 42

4.3 Generic Connector Protocol 43

4.3.1 Handshake and Profile Message Exchanges 45

4.3.2 MBean Server Operation and Connection Message Exchanges 47

4.3.3 Security Features in the JMXMP Connector 50

4.3.3.1 TLS Profile 51

4.3.3.2 SASL Profile 51
Contents 6

4.3.4 Protocol Violations 51

4.3.5 Protocol Versioning 52

4.3.6 Properties Controlling Client and Server 53

4.3.6.1 Global Properties of the Generic Connector 53

4.3.6.2 TLS Properties 53

4.3.6.3 SASL Properties 54

5. Defining a New Transport 55

6. Bindings to Lookup Services 57

6.1 Terminology 58

6.2 General Principles 58

6.2.1 JMXServiceURL Versus JMXConnector Stubs 58

6.2.2 Lookup Attributes 59

6.3 Using the Service Location Protocol 62

6.3.1 SLP Implementation 62

6.3.2 SLP Service URL 62

6.3.3 SLP Lookup Attributes 62

6.3.4 Code Templates 62

6.3.4.1 Discovering the SLP Service 63

6.3.4.2 Registering a JMX Service URL With SLP 64

6.3.4.3 Looking up a JMX Service URL With SLP 65

6.4 Using the Jini Network Technology 66

6.4.1 Jini Networking Technology Implementation 66

6.4.2 Service Registration 66

6.4.3 Using JMX Remote API Connector Stubs 67

6.4.4 Jini Lookup Service Attributes 68

6.4.5 Code Templates 68

6.4.5.1 Discovering the Jini Lookup Service 69

6.4.5.2 Registering a JMX Remote API Connector Stub With the
Jini Lookup Service 70
Contents 7

6.4.5.3 Looking up a JMX Connector Stub From the Jini Lookup
Service 71

6.5 Using the Java Naming and Directory Interface (LDAP Backend) 72

6.5.1 LDAP Schema for Registration of JMX Connectors 73

6.5.2 Mapping to Java Objects 75

6.5.3 Structure of the JMX Remote API Registration Tree 75

6.5.4 Leasing 76

6.5.5 Code Templates 76

6.5.5.1 Discovering the LDAP Server 76

6.5.5.2 Registering a JMXServiceURL in the LDAP server 77

6.5.5.3 Looking up a JMX Service URL From the LDAP Server
79

6.6 Registration With Standards Bodies 80

7. Summary of Environment Parameters 81

A. Service Templates 85

A.1 Service Template for the service:jmx Abstract Service Type 85

A.2 Service Template for the service:jmx:jmxmp Concrete Service Type 87

A.3 Service Template for the service:jmx:rmi Concrete Service Type 88

A.4 Service Template for the service:jmx:iiop Concrete Service Type 90

B. Non-standard environment parameters 95
Contents 8

Contents 9

10 Java Management Extensions Remote API 1.0 Specification Proposed Final Draft • October 2003

CHAPTER 1

Introduction

This document defines the JavaTM Management Extensions (JMXTM) Remote API, in
conjunction with the API documentation generated by the JavadocTM tool. This
specification was produced through the Java Community ProcessSM (JCP), as Java
Specification Request (JSR) number 160.

1.1 Purpose of This Standard
Java Specification Request (JSR) 3 [JSR3] defines the JMX specification. What is
standardized by JSR 3 is the way in which resources are instrumented within a
management agent based on Java technology, and a certain number of agent-local
services based on that instrumentation. Although JSR 3 defines terminology for
remote access to instrumentation, it does not standardize any particular remote
access API or protocol. Many solutions exist for exporting JMX API instrumentation
either through existing management protocols such as the simple network
management protocol (SNMP) or through proprietary protocols. This JSR (JSR 160)
standardizes one such solution.

The principal goals of this standard are interoperability, transparency, security, and
flexibility.

The standard is interoperable because it completely defines the standard protocols
that are used between client and server, so that two different implementations of the
standard can communicate.

The standard is transparent because it exposes an API to the remote client that is as
close as possible to the API defined by the JMX specification for access to
instrumentation within the agent.

The standard is secure because it builds on the Java technology standards for
security, namely the Java Secure Socket Extension (JSSE), the Simple Authentication
and Security Layer (SASL), and the Java Authentication and Authorization Service
11

(JAAS). These standards enable connnections between clients and servers to be
private and authenticated and allow servers to control what operations different
clients can perform.

The standard is flexible because, in addition to the required protocol, it provides
ways for new transport protocols to be added and new implementations of the
existing protocols to be substituted.

1.2 Required Version of the JMX
Specification
This standard is separate from the JMX specification. It builds on JMX technology to
provide a remoting capability. The required version of the JMX specification is 1.2, or
any later version. Version 1.2 defines (among other things) these features, used by
this standard:

■ A parent interface of the MBeanServer interface, called
MBeanServerConnection (See Section 2.3 “MBean Server Operations Through
a Connection” on page 17)

■ The ability to construct a proxy for a managed bean (MBean) accessed through an
MBeanServerConnection, to simplify access to MBeans and make it type-safe

■ Permissions that can be used to control access to individual MBeans, and even to
particular attributes and operations within those MBeans

1.3 History
It was originally planned that this JSR would define a new version of the JMX
specification that added a remoting capability. Because it was desired to integrate the
JMX technology into the Java 2 Platform Enterprise Edition (the J2EETM platform)
1.4, and given the schedule constraints of the J2EE platform 1.4, this plan was
modified by splitting the work into two parts:

■ The necessary changes to the existing JMX specification were handled as a
Maintenance Release of JSR 3. This produced JMX 1.2, which was released in
December 2002.

■ JSR 160 was redefined as a separate specification that builds on the JMX
specification to provide a remoting capability.
12 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

In addition to this change, two items from the original JSR proposal have been
omitted from this initial version of the standard:

■ A discovery and lookup service is no longer proposed. Rather than reinventing
the wheel, this standard instead details how to advertise and find JMX API agents
using existing discovery and lookup infrastructures. See Chapter 6 “Bindings to
Lookup Services”.

■ A Hypertext Transfer Protocol (HTTP) connector is no longer proposed as
standard. HTTP incurs a significant protocol overhead. The main argument for
retaining it would be that the secure HTTP/S variant is more likely to be accepted
by firewalls. But the JMXMP connector proposed by this standard is based on the
same security technology, Transport Layer Security (TLS).
Chapter 1 Introduction 13

14 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

CHAPTER 2

Connectors

The JMX specification defines the notion of connectors. A connector is attached to a
JMX API MBean server and makes it accessible to remote Java technology-based
clients. The client end of a connector exports essentially the same interface as the
MBean server.

A connector consists of a connector client and a connector server.

A connector server is attached to an MBean server and listens for connection
requests from clients.

A connector client takes care of finding the server and establishing a connection with
it. A connector client will usually be in a different Java Virtual Machine1 (JVMTM)
from the connector server, and will often be running on a different machine.

A given connector server can establish many concurrent connections with different
clients.

A given connector client is connected to exactly one connector server. A client
application can contain many connector clients connected to different connector
servers. There can be more than one connection between a given client application
and a given server.

Many different implementations of connectors are possible. In particular, there are
many possibilities for the protocol used to communicate over a connection between
client and server. This standard defines a standard protocol based on Remote
Method Invocation (RMI) that must be supported by every conformant
implementation. It also defines an optional protocol based directly on TCP sockets,
called the JMX Messaging Protocol (JMXMP). An implementation of this standard
can omit the JMXMP connector.

1. The terms "Java virtual machine" and "JVM" mean a virtual machine for the Java platform.
15

2.1 Sessions and Connections
A distinction is made between a session and a connection. A connector client sees a
session. During the lifetime of that session, there can be many successive connections
to the connector server. In the extreme case, there might be one connection per client
request, for example if the connector uses a stateless transport such as the user
datagram protocol (UDP) or the Java Message Service (JMS).

A session has state on the client, notably its listeners (see Section 2.4 “Adding
Remote Listeners” on page 18). A session does not necessarily have state on the
server, and for the two connectors defined by this specification, it does not.

A connection does not necessarily have state on the client or server, although for the
two connectors defined here it does.

FIGURE 2-1 A Session Can Contain Many Successive Connections

In FIGURE 2-1 three connections are opened and closed over the lifetime of a single
session.

2.2 Connection Establishment
In FIGURE 2-2, a connector client connects to a connector server with the address
"service:jmx:jmxmp://host1:9876". A successful connection request returns
the client end of the connection to the connector client.
16 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

FIGURE 2-2 Connector Client and Server Communicate to Make a Connection

2.3 MBean Server Operations Through a
Connection
From the client end of a connection, user code can obtain an object that implements
the MBeanServerConnection interface. This interface is very similar to the
MBeanServer interface that user code would use to interact with the MBean server
if it were running in the same Java Virtual Machine.

MBeanServerConnection is the parent interface of MBeanServer. It contains all
the same methods except for a small number of methods only appropriate for local
access to the MBean server. All of the methods in MBeanServerConnection
declare IOException in their "throws" clause in addition to the exceptions declared
in MBeanServer.

Because MBeanServer extends MBeanServerConnection, client code can be
written that works identically whether it is operating on a local MBean server or on
a remote MBean server through a connector.

In FIGURE 2-3, the operation getMBeanInfo("a:b=c") on the
MBeanServerConnection in a remote client is translated into a getMBeanInfo
request that is sent to the server end of the connection via the connector protocol.
The server reacts to this request by performing the corresponding operation on the
local MBean server, and sends the results back to the client. If the operation
succeeds, the client’s getMBeanInfo call returns normally. If the operation
Chapter 2 Connectors 17

produces an exception, the connector arranges for the client’s getMBeanInfo call to
receive the same exception. If there is a problem in the communication of the
request, the client’s getMBeanInfo call will get an IOException.

FIGURE 2-3 An Operation on the Client Results in the Same Operation on the MBean
Server

2.4 Adding Remote Listeners
One of the operations in the MBeanServerConnection interface is the
addNotificationListener operation. As in the local case, this operation
registers a listener for the notifications emitted by a named MBean. A connector will
arrange for the notifications to be sent from the server end of a connection to the
client end, and from there to the listener.

The details of how notifications are sent depend on the connector protocol. The two
connectors defined in this specification use a stateless notification buffer, as described in
Section 2.4.3 “Notification Buffer” on page 20.

2.4.1 Filters and Handbacks
The addNotificationListener method in the MBeanServerConnection
interface has four parameters: the object name, the listener, the filter, and the handback.
The object name specifies which MBean to add the listener to. The listener is the
object whose handleNotification method will be called when a notification is
emitted by the MBean. As described in Section 2.4 “Adding Remote Listeners” on
page 18, this listener object is local to the client.
18 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

The optional filter selects which notifications this listener is interested in. A given
connector can execute the filter when the notification arrives at the client, or it can
transmit the filter to the server to be executed there. Executing the filter on the
server is much more efficient because it avoids sending a notification over the
network only to have it discarded on arrival. Filters should be designed so that they
work whether they are run on the client or on the server. In particular, a filter should
be an instance of a serializable class known to the server. Section 2.11 “Class
Loading” on page 28, describes class loading in more detail.

The connectors defined by this standard execute filters on the server.

To force filtering to be done on the client, the filtering logic can be moved to the
listener.

The optional handback parameter to addNotificationListener is an arbitrary
object that will be given to the listener when the notification arrives. This allows the
same listener object to be registered with several MBeans. The handback can be used
to determine the appropriate context when a notification arrives. The handback
object remains on the client - it is not transmitted to the server and does not have to
be serializable.

The MBeanServerConnection interface also has an
addNotificationListener variant that specifies the listener as an ObjectName,
the name of another MBean that is to receive notifications. With this variant, both the
filter and the handback are sent to the remote server.

2.4.2 Removing Listeners
In general, a listener that has been added with the following method is uniquely
identified for a given name by the triple (listener,filter,handback):

addNotificationListener(ObjectName name,
NotificationListener listener,
NotificationFilter filter,
Object handback)

It can subsequently be removed either with the two-parameter
removeNotificationListener, specifying just listener, or with the four-
parameter removeNotificationListener that has the same parameters.

A problem arises with the four-parameter method in the remote case. The filter
object that is deserialized in the removeNotificationListener method is not
generally identical to the filter object that was deserialized for
addNotificationListener. Since notification broadcaster MBeans usually check
for equality in the (listener,filter,handback) triple using identity rather than the
equals method, it would not in general be possible to remove just one
(listener,filter,handback) triple remotely.
Chapter 2 Connectors 19

The standard connectors avoid this problem by using listener identifiers. When a
connector client adds a (listener,filter,handback) triple to an MBean, the connector
server returns a unique identifier for that triple on that MBean. When the connector
client subsequently wants to remove the triple, it uses the identifier rather than
passing the triple itself. To implement the two-parameter
removeNotificationListener form, the connector client looks up all the triples
that had the same listener and sends a removeNotificationListener request
with the listener identifier of each one.

This technique has the side-effect that a remote client can remove a triple even from
an MBean that implements NotificationBroadcaster but not
NotificationEmitter. A local client of the MBeanServer interface cannot do
this.

2.4.3 Notification Buffer
The two connectors defined by this specification handle notifications and listeners as
follows. Every connector server has a notification buffer. Conceptually, this is a list of
every notification ever emitted by any MBean in the MBean server that the connector
server is attached to. In practice, the list is of finite size, so when necessary the oldest
notifications are discarded.

Entries in the notification buffer consist of a Notification object and an
ObjectName. The ObjectName is the name of the MBean that emitted the
notification.

For every MBean that can send notifications (implements the
NotificationBroadcaster interface), the connector server registers a listener
that adds each notification to the notification buffer. The connector server tracks the
creation of MBeans, and when a new NotificationBroadcaster MBean is
created, the listener is added to it.

Entries in the notification buffer have sequence numbers. Sequence numbers are
positive. A later notification always has a greater sequence number than an earlier
one. Sequence numbers are not necessarily contiguous, but the notification buffer
always knows what the next sequence number will be.

FIGURE 2-4 shows a connector server with its notification buffer. The notification
buffer has saved four notifications, with sequence numbers 40 to 43. The next
notification will have sequence number 44.

The client state of a session includes the sequence number of the next notification
that the client has not yet seen. In FIGURE 2-4, the client of session 1 has not yet seen
the notifications starting with number 41. The client of session 2 has seen all
notifications, so the next notification it will see will have the next available sequence
number, 44.
20 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

FIGURE 2-4 Notification Buffer Saves Notifications From All MBeans

When a new session is created, the client asks for the next sequence number that will
be used. It is only interested in notifications with that number or greater, not the
arbitrarily old notifications that are already present.

A notification buffer has no state related to the connector server. So an
implementation can use the same notification buffer for more than one connector
server.

2.4.4 Getting Notifications From the Notification Buffer
Conceptually, a connector client receives notifications by sending a fetch-notifications
request to the connector server. The request looks like this:

“Give me the notifications starting with sequence number that match
my filters.”

Here, is the next sequence number the client expects to see. In FIGURE 2-4, is 41
for session 1 and 44 for session 2.

“My filters” means the ObjectName and NotificationFilter values for every
addNotificationListener operation that has been done on the connector client.
This filter list is either sent with every fetch-notifications request, or it is maintained as
part of the state of a connection. The latter approach is followed in the two protocols
defined by this specification, because the filter list is potentially very big.

The fetch-notifications request will wait until one of the following conditions is met:

s

s s
Chapter 2 Connectors 21

■ There is at least one notification in the buffer that matches the client’s criteria,
namely that has a sequence number at least and matches the client’s filters.

■ A timeout specified by the client is reached.

■ The connector server decides to terminate the operation, typically because of a
timeout of its own.

The result of the fetch-notifications call includes the following information:

■ Zero or more notifications that matched the client’s criteria. The result does not
have to include all available notifications. It may be limited to a maximum
number, for example. But if there are notifications, they will be the earliest
available ones.

■ A sequence number that is the number the client should use in its next fetch-
notifications call. This is the sequence number of the first notification that matched
the caller’s criteria but was not included in the result, or it is the next available
sequence number if all matched notifications were included.

■ A sequence number that is the smallest sequence number of a notification still
in the buffer. If , it is possible that notifications the client was interested in
have been lost. It is not certain, however, because the notifications between and

might not have matched the caller’s filters.

This information is encapsulated in the NotificationResult class from the API.

As an example, suppose that in FIGURE 2-4 the notifications 41 and 43 match the
filters for session 1. Its fetch-notifications call will have and can return
immediately with notifications 41 and 43, , and . No notifications have
been lost () and the next fetch-notifications will have .

2.5 Concurrency
A JMX Remote API connector must support concurrent requests. If a thread calls a
potentially slow operation like invoke on the client end of a connector, another
thread should not be forced to wait for that operation to complete before performing
an operation.

2.6 Normal Termination
Either end of a session can terminate the session at any time.

s

n

f
f s>

s
f

s 41=
n 44= f 40=

f s≤ s 44=
22 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

If the client terminates a session, the server will clean up any state relative to that
client. If there are client operations in progress when the client terminates the
session, then the threads that invoked them will receive an IOException.

If the server terminates a session, the client will get an IOException for any remote
operations that were in progress and any remote operations subsequently attempted.

It is not specified what happens to MBean server operations that are running when
the remote session that caused them is closed. Typically, they will run to completion,
since in general there is no reliable way to stop them.

2.7 Abnormal Termination
The client end of a session can detect that the server end has terminated abnormally.
This might happen for example because the JVM software that the server was
running in exited, or because the machine it was running on crashed. The connector
protocol (or its underlying transport) might also determine that the server is
unreachable, because communication to it has not succeeded for a certain period of
time. This can happen if there is a physical or configuration problem with the
network.

In all of these cases, the client can terminate the session. The behavior seen by code
using the client should be the same as if the server had terminated the session
normally, except that the details of the exception seen by the client might differ.

Similarly, the server end of a session, or a connection within a session, can detect
that the client end has terminated abnormally or become unreachable. It should
behave as if the client had terminated the connection normally, except that the
notification of connection termination indicates a failure.

2.7.1 Detecting Abnormal Termination
Transport protocols such as TCP usually have built-in detection of abnormal
termination. When a Java Virtual Machine exits, any TCP connections it had are
explicitly closed by the TCP protocol, meaning that the other end of the connection
is informed promptly that the connection has been closed. But when a machine
crashes or the network connection fails, this is detected less promptly. For example,
TCP will only notice that a connection is broken if an attempt is made to write on it,
and even then it will typically only signal the problem after a timeout on the order
of minutes. Connectors should close connections that receive errors, but an
additional mechanism is needed if connections are mostly idle or if the time to detect
a failed connection is too long.
Chapter 2 Connectors 23

For the two connectors defined by this specification, an implementation is not
required to detect failure promptly. However, the following approach is
recommended:

1. A fetch-notifications call from the client should be terminated with zero
notifications if none arrive within a certain period.

2. A connector server should close a connection that has not received any client
requests (including fetch-notifications) for a certain time.

3. A client should specify a timeout in each fetch-notifications call. If the call does not
return after the timeout (plus some margin for delays) then the client should close
the connection.

This approach is based on the assumption that a client will always do a new fetch-
notifications call shortly after the previous one returns. So case 2 never happens for a
working connection.

If a session has no listeners, there is no need for it to do a fetch-notifications call. In
this case, a server that follows the approach detailed here will close idle connections.
The client will re-open the connection the next time it needs to do an operation on it.

2.8 Connector Server Addresses
A connector server usually has an address, which clients can use to establish
connections to the connector server. Some connectors can provide alternative ways
to establish connections, such as through connection stubs (see Section 2.9.2
“Connection Stubs” on page 26).

When a connector server has an address, this address is usually described by the
class JMXServiceURL. The API documentation for that class and for the standard
connectors explains the semantics of these addresses.

A user-defined connector can choose to use another address format, but it is
recommended to use JMXServiceURL where possible.

An example of a connector server address is shown below:

service:jmx:jmxmp://host1:9876

All JMXServiceURL addresses begin with "service:jmx:". The following jmxmp
indicates the connector to use, in this case the JMXMP Connector (see Chapter 4
“Generic Connector”). host1 and 9876 are respectively the host and the port on
which the connector server is listening.
24 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

2.9 Creating a Connector Client
A connector client is represented by an object that implements the JMXConnector
interface. There are two ways in which a connector client can be created:

■ Using an address, as covered in Section 2.9.1 “JMXConnectorFactory” on page 25

■ Using a connection stub, as covered in Section 2.9.2 “Connection Stubs” on
page 26

Which way an application uses depends mainly on the infrastructure that is used to
find the connector server to which the client wants to connect.

2.9.1 JMXConnectorFactory
If the client has the address (JMXServiceURL) of the connector server to which it
wants to connect, it can use the JMXConnectorFactory to make the connection.
This is the usual technique when the client has found the server through a text-based
discovery or directory service such as SLP.

For example, an application app1 that includes an MBean server might export that
server to remote managers as follows:

1. Create a connector server cServer

2. Get cServer ’s address addr, either by using the JMXServiceURL that was
supplied to its constructor to tell it what address to use, or by calling
cServer.getAddress()

3. Put the address somewhere the management applications can find it, for example
in a directory or in an SLP service agent

A manager can start managing app1 as follows:

1. Retrieve addr from where it was stored in step 3 above

2. Call JMXConnectorFactory.connect(addr)
Chapter 2 Connectors 25

2.9.2 Connection Stubs
An alternative way for a client to connect to a server is to obtain a connector stub. A
connector stub is a JMXConnector object generated by a connector server. It is
serializable so that it can be transmitted to a remote client. A client that retrieves a
connector stub can then call the stub’s connect method to connect to the connector
server that generated it.

For example, an application app1 that includes an MBean server might export that
server to remote managers as follows:

1. Create a connector server cServer

2. Obtain a connector stub cStub by calling cServer.toJMXConnector

3. Put the stub somewhere the management applications can find it, for example in
a directory, in the JiniTM lookup service, or in an HTTP server

A manager can start managing app1 as follows:

1. Retrieve cStub from where it was stored in step 3 above

2. Call cStub.connect to connect to the remote MBean server through cServer

In some circumstances, a connector server might not have all the information needed
to generate a connector stub that any client can use. The details of connection might
depend on the client’s environment. In such cases, the connector stub would need to
be generated by a third party, for example by administrative tools that know the
relevant details of the client and server environments.

2.9.3 Finding a Server
Chapter 6 “Bindings to Lookup Services”, defines how an agent based on JMX
technology can register its connector servers with existing lookup and discovery
infrastructures, so that a JMX Remote API client can create or obtain a
JMXConnector object to connect to the advertised servers. In particular, that
chapter provides the following information:

■ Section 6.3 “Using the Service Location Protocol” on page 62, describes how a
client can retrieve a JMX service URL from SLP, and use it to connect to the
corresponding server

■ Section 6.4 “Using the Jini Network Technology” on page 66, describes how a
client can retrieve a connector stub from the Jini lookup service (LUS) and connect
to the corresponding server
26 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

■ Section 6.5 “Using the Java Naming and Directory Interface (LDAP Backend)” on
page 72, describes how a client can retrieve a JMX service URL from the
Lightweight Directory Access Protocol (LDAP) directory, and use it to connect to
the corresponding server

2.10 Creating a Connector Server
A connector server is represented by an object of a subclass of
JMXConnectorServer. The usual way to create a connector server is through the
JMXConnectorServerFactory. Using a JMXServiceURL provided as a
parameter, the factory determines what class to instantiate, in a way similar to the
JMXConnectorFactory described in Section 2.9.1 “JMXConnectorFactory” on
page 25.

A connector server can also be created by instantiating a subclass of
JMXConnectorServer explicitly.

To be useful, a connector server must be attached to an MBean server, and it must be
active.

A connector server can be attached to an MBean server in one of two ways. Either
the MBean server to which it is attached is specified when the connector server is
constructed, or the connector server is registered as an MBean in the MBean server
to which it is attached.

A connector server does not have to be registered in an MBean server. It is even
possible, though unusual, for a connector server to be registered in an MBean server
different from the one to which it is attached.

CODE EXAMPLE 2-1 shows how to create a connector server that listens on an
unspecified port on the local host. It is attached to the MBean server mbs but not
registered in it:

The address that the connector server is actually listening on, including the port
number that was allocated, can be obtained by calling cs.getAddress().

CODE EXAMPLE 2-1 Creating a Connector Server attached to an MBean Server

MBeanServer mbs = MBeanServerFactory.createMBeanServer();
 JMXServiceURL addr = new JMXServiceURL("jmxmp", null, 0);
 JMXConnectorServer cs =
 JMXConnectorServerFactory.newJMXConnectorServer(addr, null, mbs);
 cs.start();
Chapter 2 Connectors 27

CODE EXAMPLE 2-2 shows how to do the same thing but with a connector server that
is registered as an MBean in the MBean server to which it is attached:

2.10.1 Publishing a Server
Chapter 6 “Bindings to Lookup Services” defines how an agent can publish its
connector servers with existing lookup and discovery infrastructures, so that a JMX
Remote API client that does not know about such a server can find it and connect to
it. In particular, that section provides the following information:

■ Section 6.3 “Using the Service Location Protocol” on page 62, describes how an
agent registers the JMX service URL of a connector server with SLP, so that a JMX
Remote API client can retrieve it and use it to connect to the server

■ Section 6.4 “Using the Jini Network Technology” on page 66, describes how an
agent registers the connector stub of a connector server with the Jini lookup
service, so that a JMX Remote API client can retrieve this stub and connect to the
server

■ Section 6.5 “Using the Java Naming and Directory Interface (LDAP Backend)” on
page 72, describes how an agent registers the JMX Service URL of a connector
server in an LDAP directory, so that a JMX Remote API client can retrieve this
URL and use it to connect to the server.

2.11 Class Loading
Every non-primitive Java object has a class, and every class has a class loader. A
subtle pitfall of class loading is that the class a.b.C created by the class loader cl1 is
not the same as the class a.b.C created by the class loader cl2. Here, "created" refers

CODE EXAMPLE 2-2 Creating a Connector Server Registered in an MBean Server

MBeanServer mbs = MBeanServerFactory.createMBeanServer();
JMXServiceURL addr = new JMXServiceURL("jmxmp", null, 0);
JMXConnectorServer cs =
 JMXConnectorServerFactory.newJMXConnectorServer(addr, null, null);
ObjectName csName = new ObjectName(":type=cserver,name=mycserver");
mbs.registerMBean(cs, csName);
cs.start();
28 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

to the class loader that actually creates the class with its defineClass method. If
cl1 and cl2 both find a.b.C by delegating to another class loader cl3, it is the same
class.

A value of type "a.b.C created by cl1" cannot be assigned to a variable or parameter
of type "a.b.C created by cl2". An attempt to do so will result in an exception such
as ClassCastException.

When one end of a connection receives a serialized object from the other end, it is
important that the object be deserialized with the right class loader. This section
explains the rules for determining the class loader to use in every case.

These rules for class loading are needed when the types of attributes, or of operation
parameters and return values, are application-specific Java types. To avoid having to
deal with these rules, it is a good idea to use only standard types defined by the Java
platform or by the JMX and JMX Remote APIs. The types defined for Open MBeans
in the JMX API allow arbitrarily complex data structures to be described without
requiring application-specific types. An important side-effect is that interoperation
with non-Java clients is greatly simplified.

These rules are also needed when application-specific notification filters are applied.
(See Section 2.4.1 “Filters and Handbacks” on page 18.) To avoid having to manage
class-loading rules, consider using only the three standard notification filter types
from the JMX API, NotificationFilterSupport ,
MBeanServerNotificationFilter, and
AttributeChangeNotificationFilter. An alternative is to filter in the client’s
listener, though this can increase network traffic with notifications that are discarded
as soon as they are received.

2.11.1 Class Loading on the Client End
A connector client can specify a default class loader when making a connection to a
server. This class loader is used when deserializing objects received from the server,
whether they are returned values from MBeanServerConnection methods,
exceptions thrown by those methods, or notifications emitted by MBeans to which
the client is listening.

The default class loader is the value of the attribute
jmx.remote.default.class.loader from the JMXConnector environment.
The JMXConnector first looks for this attribute in the environment Map that was
supplied when the JMXConnector was connected. If there was none, or the
attribute is not found, it then looks in the environment Map that was supplied at
creation time. If there was none, or the attribute is not found, then the default class
loader is the context class loader
Chapter 2 Connectors 29

(Thread.currentThread().getContextClassLoader()) that was in place
when the JMXConnector was connected. It is not specified what happens if the
default class loader determined by these rules is null.

If the value of the jmx.remote.default.class.loader attribute is not a class
loader, then the attempt to connect the JMXConnector gets an
IllegalArgumentException.

Note – serialization: When a JMXConnector is serialized, the environment Map
that was supplied when the JMXConnector was created is lost: the Map is not
serialized because it is expected to contain objects, like class loaders, which are not
serializable. As a consequence, when a specific default class loader is required for a
JMXConnector, it is recommended always to specify it in the Map supplied when
connecting.

2.11.2 Class Loading on the Server End
The class loader to be used when deserializing parameters received from the client
depends on the operation. Sometimes the appropriate class loader is the one that
belongs to the target MBean, because that MBean might have parameter types that
are not defined by the JMX API or the JMX Remote API. Sometimes the appropriate
class loader is one configured during the creation of the connector server, because
the connector server is intended to be used with a particular management
application. Such an application might define its own subclasses of MBean
parameter types, or it might define its own NotificationFilter classes for
listeners. An MBean being managed cannot be expected to anticipate every
notification filter that a management application might want to use, so it does not
make sense to use only the MBean’s class loader to deserialize notification filters
with listeners being added to the MBean.

Like a connector client, a connector server has a default class loader that is determined
when the connector server is started. The default class loader is determined as
follows:

■ If the connector server’s environment map contains the attribute
jmx.remote.default.class.loader, the value of that attribute is the default
class loader

■ If the environment map contains the attribute
jmx.remote.default.class.loader.name, the value of that attribute is the
ObjectName of an MBean that is the default class loader. This allows a connector
server to be created with a class loader that is a management applet (m-let) in the
same MBean server

■ If neither of the above attributes is defined, the default class loader is the thread’s
context class loader at the time when the JMXConnectorServer was started
30 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

If both jmx.remote.default.class.loader and
jmx.remote.default.class.loader.name are defined, or if the value of
jmx.remote.default.class.loader is not a ClassLoader, or if the value of
jmx.remote.default.class.loader.name is not an ObjectName that names a
ClassLoader, the attempt to start the connector server gets an
IllegalArgumentException.

For certain operations that interact with a single "target" MBean, M, objects are
deserialized using M’s extended class loader. This is a class loader that loads each class
X, as follows:

1. The class loader that loaded or is loading M is asked to load X

2. If that fails with a ClassNotFoundException, the default class loader is asked
to load X

3. If step 1 fails with an exception other than ClassNotFoundException, or if
step 2 fails with any exception, that exception is the result of loading X

The rules for deserialization of MBeanServerConnection operations are as
follows:

■ The parameters to setAttribute, and setAttributes are deserialized using
the target MBean’s extended class loader

■ The Object array in invoke is deserialized using the target MBean’s extended
class loader

■ The Object array in the createMBean forms that have one is deserialized using
the target MBean’s extended class loader. Here, "the class loader that loaded or is
loading M" is the class loader described in the API documentation for the
particular createMBean form. In the case of the form that uses the Class Loader
Repository, it is a class loader that always delegates to that repository

■ The QueryExp in the queryNames and queryMBeans operations is deserialized
using the default class loader

■ The NotificationFilter and the Object handback in the
addNotificationListener and removeNotificationListener operations
(all forms) are deserialized using the target (notification broadcaster) MBean’s
extended class loader

Remaining parameters are of type String (which is a final class known to the
bootstrap class loader), String[], or ObjectName.

If a user-defined subclass of ObjectName is sent from client to server, it is not
specified how it is deserialized, so this is not guaranteed to work in general.
Chapter 2 Connectors 31

2.12 Connector Server Security
Connector servers typically have some way of authenticating remote clients. For the
RMI connector, this is done by supplying an object that implements the
JMXAuthenticator interface when the connector server is created. For the JMXMP
connector, this is done using SASL.

In both cases, the result of authentication is a JAAS Subject representing the
authenticated identity. Requests received from the client are executed using this
identity. With JAAS, you can define what permissions the identity has. In particular,
you can control access to MBean server operations using the MBeanPermission
class. For this to work, though, you must have a SecurityManager.

If a connector server does not support authentication or is not set up with
authentication, then client requests are executed using the same identity that created
the connector server.

As an alternative to JAAS, you can control access to MBean server operations by
using an MBeanServerForwarder. This is an object that implements the
MBeanServer interface by forwarding its methods to another MBeanServer object,
possibly performing additional work before or after forwarding. In particular, the
object can do arbitrary access checks. You can insert an MBeanServerForwarder
between a connector server and its MBean server using the method
setMBeanServerForwarder.

2.12.1 Subject Delegation
Any given connection to a connector server has at most one authenticated Subject.
This means that if a client performs operations as or on behalf of several different
identities, it must establish a separate connection for each one.

However, the two standard connectors also support the notion of subject delegation. A
single connection is established between client and server using an authenticated
identity, as usual. With each request, the client specifies a per-request Subject. The
request is executed using this per-request identity, provided that the authenticated
per-connection identity has permission to do so. That permission is specified with
the permission SubjectDelegationPermission.

For each delegated Subject, the client obtains an MBeanServerConnection from
the JMXConnector for the authenticated Subject. Requests using this
MBeanServerConnection are sent with the delegated Subject.
MBeanServerConnection objects for any number of delegated identities can be
obtained from the same JMXConnector and used simultaneously.
32 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

CHAPTER 3

RMI Connector

The RMI connector is the only connector that must be present in all implementations
of this specification. It uses the RMI infrastructure to communicate between client
and server.

3.1 RMI Transports
RMI defines two standard transports, the Java Remote Method Protocol (JRMP) and
the Internet Inter-ORB Protocol (IIOP).

JRMP is the default transport. This is the transport you get if you use only the
java.rmi.* classes from the Java 2 Platform Standard Edition (the J2SETM

platform).

IIOP is a protocol defined by CORBA. Using RMI over IIOP allows for
interoperability with other programming languages. It is covered by the
javax.rmi.* and org.omg.* classes from the J2SE plaform.

RMI over these two transports is referred to as RMI/JRMP and RMI/IIOP.

The RMI connector supports both transports. Refer to the API documentation (in
particular the description of the javax.management.remote.rmi package) for
details.
33

3.2 Mechanics of the RMI Connector
For every RMI connector server, there is a remotely-exported object that implements
the remote interface RMIServer. A client that wants to communicate with the
connector server needs to obtain a remote reference, or stub, that is connected to this
remote object (how the stub can be obtained is described in Section 3.3 “How to
Connect to an RMI Connector Server” on page 37). RMI arranges that any method
called on the stub is forwarded to the remote object. So, a client that has a stub for
the RMIServer object can call a method on it, resulting in the same method being
called in the server’s object.

FIGURE 3-1 shows two clients that both have stubs for the same server object. The
server object is labeled impl because it is the object that implements the functionality
of the RMIServer interface.

FIGURE 3-1 Several Clients can Have Stubs Connected to the Same Server Object
34 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

FIGURE 3-2 A New Client Connection Is a New Remote Object on the Server

In addition to the remote object representing the connector server, there is one
remote object for every client connection made through the connector to the MBean
server. When a client wants to invoke methods on the remote MBean server, it
invokes the newClient method in its server stub. This causes the newClient
method in the remote server object to be invoked. This method creates a new remote
object that implements the remote interface RMIConnection, as shown in
FIGURE 3-2. This interface contains all the remotely-accessible methods of the MBean
Chapter 3 RMI Connector 35

server. The value returned from the client’s newClient method is a stub that is
connected to this new object. When the client calls an MBean server method such as
getAttribute, this produces a call to the corresponding method in the
RMIConnection stub, and hence a remote call to the corresponding implementation
object in the server.

3.2.1 Wrapping the RMI Objects
User code does not usually interact directly with the RMIServer and
RMIConnection objects.

On the server side, the RMIServer object is created and exported by an
RMIConnectorServer. RMIConnectorServer is a subclass of
JMXConnectorServer, and as such is a connector server for the purposes of this
standard. RMIConnection objects are created internally by the RMIServer
implementation, but user code in the server never sees them.

On the client side, an RMIServer stub can be obtained explicitly, as described in
Section 3.3 “How to Connect to an RMI Connector Server” on page 37. More usually,
it is obtained as part of the process of looking up a URL for the RMI connector, but
is wrapped in an RMIConnector object. User code usually only deals with this
RMIConnector object. RMIConnector implements the JMXConnector interface
and it is through this interface that it is usually accessed.

In normal use, user code never invokes any methods from RMIServer, and never
sees any objects of type RMIConnection. These objects are hidden by the
RMIConnector class.

3.2.2 RMIConnection
The RMIConnection interface is similar to the MBeanServerConnection
interface defined by the JMX specification, but has some important differences:

■ Parameters that are subject to the class loading rules detailed in Section 2.11
“Class Loading” on page 28 are wrapped inside a MarshalledObject so that
they can be unwrapped by the server after it has determined the appropriate class
loader to use

■ The addNotificationListeners and removeNotificationListener
methods use listener IDs instead of listeners, as detailed in Section 2.4 “Adding
Remote Listeners” on page 18

■ There are additional methods to get the connection ID and to close the connection

■ There is an additional method to obtain outstanding notifications
36 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

The RMIConnection object represents a connection, not a session, in the terminology
of Section 2.1 “Sessions and Connections” on page 16. Either end of the connection
can close it at any time without affecting the session. The server closes the
connection by unexporting the RMIConnection object. Ongoing RMI calls on the
object run to completion and return normally, but new calls will fail. When the client
sees such a failure, it will obtain a new RMIConnection object as described in
Section 3.2 “Mechanics of the RMI Connector” on page 34.

3.2.3 Notifications
The RMI connector uses the techniques described in Section 2.4 “Adding Remote
Listeners” on page 18. The connector server has a stateless notification buffer
(Section 2.4.3 on page 20). If the connector client has listeners, it uses the
fetchNotifications call on the RMIConnection object to receive notifications
for them.

The list of (ObjectName,NotificationFilter) pairs corresponding to the client’s
listeners is not passed in every call to fetchNotifications. Rather, it is
established with a single addNotificationListeners call when the
RMIConnection object is created. Changes to the notification list while the
connection is open are made with further calls to addNotificationListeners
and to removeNotificationListener.

3.3 How to Connect to an RMI Connector
Server
Broadly, there are three ways to connect to an RMI connector server:

1. Supply a JMXServiceURL to the JMXConnectorFactory that specifies the rmi
or iiop protocol. This is the most usual way to connect. The JMXServiceURL
either contains the stub in an encoded form, or indicates a directory entry in
which an RMIServer stub can be found. This is further described in the API
specification of the javax.management.remote.rmi package. The details of
looking up this directory entry and creating a JMXConnector from it are hidden
from the caller

2. Obtain a JMXConnector stub from somewhere, for example a directory such as
LDAP, the Jini Lookup Service, or as the returned value of an RMI method call.
This stub is an object generated by RMIConnectorServer.toJMXConnector. It
Chapter 3 RMI Connector 37

is an object of type JMXConnector. It is not an RMI stub and should not be
confused with the RMI stubs of type RMIServer or RMIConnection. However,
it references an RMIServer stub which it uses when its connect method is called

3. Obtain an RMIServer stub from somewhere and use it as a parameter to the
constructor of RMIConnector

3.4 Basic Security With the RMI Connector
The RMI connector provides a simple mechanism for securing and authenticating
the connection between a client and a server. This mechanism is not intended to
address every possible security configuration, but provides a basic level of security
for environments using the RMI connector. More advanced security requirements are
better addressed by the JMXMP connector (see Section 4.3.3 “Security Features in the
JMXMP Connector” on page 50).

To make an RMI connector server secure, the environment supplied at its creation
must contain the property jmx.remote.authenticator, whose associated value
is an object that implements the interface JMXAuthenticator. This object is
responsible for examining the authentication information supplied by the client and
either deriving a JAAS Subject representing the client, or rejecting the connection
request with a SecurityException.

A client connecting to a server that has an JMXAuthenticator must supply the
authentication information that the JMXAuthenticator will examine. The
environment supplied to the connect operation must include the property
jmx.remote.credentials, whose associated value is the authentication
information. This object must be serializable.

This specification does not include any predefined authentication system. The
simplest example of such a system is a secret string shared between client and
server. The client supplies this string as its jmx.remote.credentials, and the
server’s JMXAuthenticator checks that it has the correct value.

As a slightly more complicated example, the authentication information could be a
String[2] that includes a username and a password. The JMXAuthenticator
verifies these, for example by consulting a password file or by logging in through
some system-dependent mechanism, and if successful derives a Subject based on
the given username.
38 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

3.4.1 How Security Affects the RMI Connector Protocol
The authentication information supplied by the client is passed as an argument to
the newClient call (see FIGURE 3-2). The connector server gives it to the
JMXAuthenticator. If the JMXAuthenticator throws an exception, that
exception is propagated to the client. If the JMXAuthenticator succeeds, it returns
a Subject, and that Subject is passed as a parameter to the constructor of the new
RMIConnection object. All of the MBean server methods in RMIConnection
perform privileged work as this particular Subject, so that they have the
permissions appropriate to the authenticated client.

3.4.2 Achieving Real Security
The solution outlined above is enough to provide a basic level of security. A number
of problems have to be addressed to achieve a real level of security, however:

1. If the authentication information includes a password, and if the network is not
secure, then attackers might be able to see the password sent from client to server

2. Attackers might be able to substitute their own server for the server that the client
thinks it is talking to, and retrieve the password that the client sends to
authenticate itself

3. Attackers might be able to see the RMI object ID of a legitimately-created
RMIConnection object as it is accessed remotely. They could then use RMI to
call that object, executing MBean server methods using the Subject that was
authenticated when the object was created

4. Attackers might be able to guess this RMI object ID, for instance if object IDs are
allocated as consecutive small integers

The first three problems can be solved by using an RMI socket factory so that the
connection between client and server uses the Secure Socket Layer (SSL). This is
covered in more detail elsewhere (see for example "Using RMI with SSL" [RMI/
SSL]).

A special case of problem 2 is that attackers might be able to modify the contents of
a directory or lookup service that is used during connection establishment. This
might be either the directory that is used to find the RMIServer stub, or the
directory that is used to find the URL. If an RMI Registry is used for the RMIServer
stub, it should be secured with SSL.

The fourth problem can be solved by setting the standard RMI system property
java.rmi.server.randomIDs to "true". This causes the 64-bit object ID of every
export RMI object to be generated using a cryptographically strong random number
generator. (See the documentation for the class java.rmi.server.ObjID.)
Chapter 3 RMI Connector 39

3.5 Protocol Versioning
The remote RMIServer interface includes a method getVersion that returns a
string including a protocol version number. This standard specifies version 1.0 of the
RMI connector protocol, which is currently the only version. Any given future
version of this standard might or might not include an updated version of the
protocol.

Each protocol version will have a version number which is the same as the version
of this standard that first defines it. For example, if version 1.1 of this standard does
not change the protocol but version 1.2 does, then the next RMI connector protocol
version number will be 1.2.

All future versions of the RMI connector will include a remote RMIServer object
that has at least the same methods as the current version, 1.0, and in particular the
getVersion method. A future version might add further methods too.

If a future version adds methods to the RMIServer interface, it must ensure that the
methods that a 1.0 client calls work as expected.

If the client side of the RMI connector defined in a future version uses methods
added to the server in that version, it must check, using getVersion, that the
server it is communicating with supports that version. Otherwise, it must limit itself
to the methods that the server does support, perhaps losing some functionality as a
consequence.
40 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

CHAPTER 4

Generic Connector

The JMX Remote API includes a generic connector as an optional part of the API. This
connector is designed to be configurable by plugging in modules to define the
following:

■ The transport protocol used to send requests from the client to the server and to
send responses and notifications from the server to the clients

■ The object wrapping for objects sent from the client to the server whose class loader
can depend on the target MBean

The JMXMP Connector is a configuration of the generic connector where the
transport protocol is based on TCP and the object wrapping is native Java
serialization (as defined by java.io.ObjectOutputStream etc.). Security is
based on JSSE [JSSE], JAAS [JAAS], and SASL [JSR28][RFC2222].

The generic connector and its JMXMP configuration are optional, which means that
an implementation can choose not to include them. An implementation that does
include them must conform to their specification here and in the API
documentation.

4.1 Pluggable Transport Protocol
Each configuration of the generic connector includes a transport protocol, which is an
implementation of the interface MessageConnection. Each end of a connection
has an instance of this interface. The interface defines three main methods:

■ The writeMessage method writes a Java object to the other end of the
connection. The Java object is of the type Message defined by the connector. It
can reference other Java objects of arbitrary Java types. For the JMXMP Connector,
the possible types of messages are contained in the package
javax.management.remote.message.
41

■ The readMessage method reads a Java object from the other end of the
connection. The Java object is of type Message and again can refer to objects of
arbitrary other types.

■ The close method closes the connection

The connection is a full-duplex connection between the client and the server. A
stream of requests is sent from client to server, and a stream of responses and
notifications is sent from server to client. See FIGURE 4-1.

FIGURE 4-1 MessageConnection Defines a Full-Duplex Transport Between Client and
Server

When client code issues an MBeanServerConnection request such as
getMBeanInfo, the request is wrapped inside an MBeanServerRequestMessage
object and written to the server using MessageConnection.writeMessage. The
client code then waits for the corresponding response. Meanwhile, another thread in
the client can write another request. When a response arrives, its message ID is used
to match it to the request it belongs to, and the thread that issued that request is
woken up with the response.

4.2 Pluggable Object Wrapping
The arguments to an MBean method called through MBeanServer.invoke, and
the attribute values supplied to setAttribute or setAttributes, can be of Java
classes that are known to the target MBean but not to the connector server. If these
objects were treated like any other, the connector server would get a
ClassNotFoundException when it tried to deserialize a request containing them.

To avoid this problem, deserialization at the server end of a connection proceeds in
two stages. First, the objects that are necessarily of classes known to the connector
server are deserialized. This is enough to determine what kind of request has been
received, which MBean it is destined for (if any), and therefore what class loader is
appropriate for use. Then the remaining objects (arguments to invoke or attribute
values for setAttribute(s)) can be deserialized using this class loader.
42 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

The ObjectWrapping interface allows object wrapping to be customized. By
default, it constructs a byte array containing the output of
ObjectOutputStream.writeObject on the object or objects to be wrapped. But
this would be inappropriate if, for example, the MessageConnection is using the
Extensible Markup Language (XML). So, in such a case an ObjectWrapping object
could be plugged into the connector that wraps the objects in XML. This XML can
then be included in the larger XML text constructed by the MessageConnection.

4.3 Generic Connector Protocol
The generic connector protocol defines a set of protocol messages that are exchanged
between the client and the server ends of the connection, and the sequence these
message exchanges must follow. Implementations of this specification must
exchange these messages in the defined sequence so that they can interoperate with
other implementations. FIGURE 4-2 depicts the UML diagram of all the messages
defined by the generic connector protocol.
Chapter 4 Generic Connector 43

FIGURE 4-2 Generic Connector Protocol Messages

The generic connector protocol messages can be divided into four categories:

■ Handshake messages:

HandshakeBeginMessage
HandshakeEndMessage
HandshakeErrorMessage
VersionMessage

■ Profile messages:

TLSMessage (JMXMP Connector only)
SASLMessage (JMXMP Connector only)

■ MBean server operation messages:

MBeanServerRequestMessage
MBeanServerResponseMessage
NotificationRequestMessage
NotificationResponseMessage

■ Connection messages

CloseMessage
44 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

4.3.1 Handshake and Profile Message Exchanges
The handshake message exchanges are started by the server end of the connection as
soon as the connect method on the JMXConnector class is called by the client and
the connection between the client and the server is established.

The server end of the connection sends a HandshakeBeginMessage to the client
with the profiles supported by the server. These profiles are retrieved from the
environment map through the jmx.remote.profiles property. The client then
starts the profile message exchanges for the profiles chosen from the server’s
supported profiles.

The JMXMP profile is used to negotiate the version of JMXMP to use. This profile is
always implicitly enabled, but is only negotiated if the client and server differ in
their default versions. See Section 4.3.5 “Protocol Versioning” on page 52.

For the other profiles, the client will first check that all the profiles requested in its
environment map are supported by the server. If not, it will send a
HandshakeErrorMessage to the server and close the connection. (This is the
behavior of the standard JMX Remote API. Other APIs for JMXMP can provide ways
to pick which of the proposed profiles to use.)

Then, for each profile asked for in the client’s environment map, the client will
negotiate that profile. The order in which profiles are negotiated is the order they
appear in the client’s environment map. This order can be important. For example, if
the client negotiates the SASL/PLAIN profile before the TLS profile, it will send a
password in clear text over the connection. If it negotiates TLS first, the connection
will become encrypted before the password is sent.

It is not specified how the server accepts or denies the sequence of profiles run by
the client. However, it is recommended that if the profiles in the server’s
environment map imply a certain level of security, the server should reject a
connection whose negotiated profiles do not ensure that level of security. For
example, if the server is configured with only the TLS profile, then it should reject
connections that do not negotiate TLS. If the server is configured with the TLS
profile and with the SASL/DIGEST-MD5 profile specifying the same level of security
as regards authentication and encryption, then it should reject connections that
negotiate neither profile.

The profile exchanges are performed one at a time and always started by the client.
Once the profile exchanges are completed the client sends a
HandshakeEndMessage to the server. No further profile exchanges are then
possible. The server replies either with the same HandshakeEndMessage if it
accepts the profiles that have been negotiated, or with a HandshakeErrorMessage
if it does not. In the latter case, the connection is closed.
Chapter 4 Generic Connector 45

After the handshake phase has been completed the client can get a reference to the
remote MBean server, send MBean server requests, and register listeners for
receiving notifications. The server will send responses to the client MBean server
requests and will forward notifications to the interested clients. FIGURE 4-3 depicts
the initial handshake and profile message exchanges.

FIGURE 4-3 Handshake and Profile Message Exchanges

Notice that only the handshake begin and handshake end messages are mandatory.
The profile message exchanges depend on the configuration of the server and the
client by means of the jmx.remote.profiles property in the environment map
passed in at the creation of the JMXConnector and JMXConnectorServer.

At any time during the handshake phase, if an error is encountered by either peer
(client or server), it must send an indication (HandshakeErrorMessage) as to why
the operation failed. The peer that encountered the problem will send the error
message to the other peer and immediately close the connection. The peer that
receives the message on the other end of the connection will also close the
connection immediately on reception of a handshake error message. FIGURE 4-4
depicts how an error is indicated by either a client or a server to the other peer
during the initial handshake message exchanges.
46 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

FIGURE 4-4 Handshake Error Message Exchanges

4.3.2 MBean Server Operation and Connection Message
Exchanges
Once the initial handshake phase has been terminated, and all profiles negotiated,
the client can retrieve a reference to the remote MBean server by calling the
getMBeanServerConnection method on the JMXConnector instance. Through
the MBeanServerConnection interface the client can perform operations on the
registered MBeans, including registration for receiving notifications. These MBean
server operations will be mapped by the protocol to
MBeanServerRequestMessage messages. For each such message the server will
receive it, decode it, perform the operation on the MBean server, and return the
result of the operation in an MBeanServerResponseMessage message.
Chapter 4 Generic Connector 47

If several client threads are performing MBean server operations at the same time,
there can be several MBeanServerRequestMessages that have been sent without
yet having received the corresponding MBeanServerResponseMessages. There is
no requirement that a client receive a response for each request before sending the
next request.

Each MBeanServerRequestMessage contains an identifier that the matching
MBeanServerResponseMessage must also contain. At any time, the client has a
set of identifiers {id1, id2, ...} for requests it has sent that have not yet received a
response. Each new request must have an identifier that is not in the set, and that is
added to the set when the request is sent. Each response must have an identifier that
is in the set, and that is removed from the set when the response is received. It is a
protocol error for these conditions to be violated. The peer that detects the error
must close the connection, optionally after sending a CloseMessage to the other
peer.

Notifications are handled using the techniques described in Section 2.4 “Adding
Remote Listeners” on page 18. The connector server has a stateless notification
buffer (Section 2.4.3 on page 20). If the connector client has listeners, it uses the
NotificationRequestMessage to receive notifications for them. Each such
message solicits a NotificationReplyMessage.

The list of (ObjectName,NotificationFilter) pairs corresponding to the client’s
listeners is not passed in every NotificationRequestMessage. Rather, it is
established with a single addNotificationListeners in an
MBeanServerRequestMessage when the connection is established. Changes to
the notification list while the connection is open are made with further
MBeanServerRequestMessages containing addNotificationListeners or
removeNotificationListener.

FIGURE 4-5 depicts the MBean server operation message exchanges.
48 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

FIGURE 4-5 MBean Server Operations Message Exchanges

At any time after the handshake phase and during the MBean server operation
message exchanges, either the client or the server can want to close the connection.
On the one hand, the client can achieve that by calling the close method on the
JMXConnector instance. On the other hand, the server can achieve that by calling
the stop method on the JMXConnectorServer instance. Additionally, the client or
server can close the connection at any time, for example as detailed in Section 2.7.1
“Detecting Abnormal Termination” on page 23. The peer initiating the connection
close action will send a message of type CloseMessage to inform the other peer
that the connection must be closed and that the necessary clean-up should be carried
out.

When a client sends or receives a CloseMessage it must not send any further
requests to the server over that connection. The server will continue to process
existing requests and send the corresponding replies before closing the connection.

FIGURE 4-6 depicts the close-connection message exchanges.
Chapter 4 Generic Connector 49

FIGURE 4-6 Close-Connection Message Exchanges

4.3.3 Security Features in the JMXMP Connector
The JMXMP Connector provides support for authentication and authorization
through the TLS and SASL profiles. The JMX Remote API does not mandate the
implementation and support of any specific SASL mechanism. It simply relies on
third-party implementations that can be plugged in using the standard SASL
interface [JSR28].
50 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

4.3.3.1 TLS Profile

The TLS profile allows the client and server ends of a connection to negotiate a TLS
encryption layer. Certificate-based authentication and mutual client/server
authentication are optional features configurable through properties in the
environment map (see Section 4.3.6 “Properties Controlling Client and Server” on
page 53).

4.3.3.2 SASL Profile

When using a SASL profile the way authentication is carried out is defined by the
selected SASL mechanism and can vary from one mechanism to another.

However, at the end of the SASL handshake exchanges an authorization identity has
been negotiated between the SASL client and the SASL server. Thus, the SASL
profile has to make this identity available to allow the MBean server and the
underlying MBeans to perform access control checks based on this identity.

The SASL profile implementation uses the JAAS framework to construct a
JMXPrincipal based on this authorization identity, and stores this JMXPrincipal
in a Subject. Then, when the JMXMPConnectorServer performs any of the
subsequent MBean server operations, it must do so with the given subject for the
required privileged action using an appropriate access control context.

An MBean interested in retrieving the authorization information can do so (if it has
the appropriate permissions) by calling:

4.3.4 Protocol Violations
If a peer receives a message from the other peer that does not respect the protocol
described here, its behavior is unspecified. The recommended behavior is to send a
CloseMessage indicating the detected violation and to close the connection
immediately afterwards.

AccessControlContext acc = AccessController.getContext();
 Subject subject = Subject.getSubject(acc);
 Set principals = subject.getPrincipals();
Chapter 4 Generic Connector 51

4.3.5 Protocol Versioning
This standard specifies version 1.0 of the JMXMP protocol, which is currently the
only version. Any given future version of this standard might or might not include
an updated version of the protocol.

Each protocol version will have a version number which is the same as the version
of this standard that first defines it. For example, if version 1.1 of this standard does
not change the protocol but version 1.2 does, then the next JMXMP protocol version
number will be 1.2.

The first message sent over a newly-opened connection is a handshake begin
message from the server to the client. This message includes the latest JMXMP
version that the server understands. If the client also understands that version, then
the subsequent communication will take place using that version. If the client only
understands an earlier version, then it will send a VersionMessage requesting that
the earlier version be used. If the server understands this earlier version, then it will
reply with the same VersionMessage, and the subsequent communication will
take place using that version. Otherwise, the server will send a
HandshakeErrorMessage and the communication will be aborted.

In other words, suppose the server version is S and the client version is C. Then the
version V to be used for communication is determined as follows:

■ Server to client: "Version S"

■ If client understands S, V = S

■ Otherwise:

■ Client to server: "Version C"

■ If server understands C:

- Server to client: "Version C"
- V = C

■ Otherwise (server does not understand C):

- Server to client: "Handshake error."

- Connection aborted

A consequence of this negotiation is that every version of the protocol must
understand every other version’s HandshakeBeginMessage and
VersionMessage. This will be true provided that Java serial compatibility is
respected. See the section Type Changes Affecting Serialization in [Serial].

It is expected but not required that every implementation of any version of this
standard understand all protocol versions from previous versions of the standard.
52 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

4.3.6 Properties Controlling Client and Server
When creating a JMXConnector or a JMXConnectorServer, an environment map
can be supplied. One of the functions of this environment is to provide configuration
parameters for the underlying profiles. The following subsections describe these
parameters.

4.3.6.1 Global Properties of the Generic Connector

These properties control global aspects of the connection, that is they are valid
regardless of the profiles that are selected.

■ jmx.remote.profiles

A string that is a space-separated list of profile names to be supported by the
client and/or the server. Examples of profile names are: JMXMP, TLS, SASL/
EXTERNAL, SASL/OTP. If this property is unspecified, no profiles will be used.

■ jmx.remote.context

An arbitrary Object to be conveyed by the handshake messages from one peer
to the other. The Object should be serializable and of a class that is known to the
other peer. If this property is unspecified, a null context will be conveyed.

The JMXMP Connector currently makes no use of this object and does not expose
it to user code on the client or server.

■ jmx.remote.authenticator

A JMXAuthenticator that is used at the end of the handshake phase to validate
the new connection. The authenticate method of this object is called with a
two-element Object[] as a parameter. The first element is the connection ID of
the new connection. The second element is the authenticated Subject, if any.
The method returns the authenticated Subject to use for the connection, or null
if there is no authenticated ID. The returned Subject is usually the same as the
Subject passed as a parameter, but it can have different Principals. If the
authenticator does not accept the connection id or Subject, it can throw a
SecurityException.

4.3.6.2 TLS Properties

The following properties control the TLS profile:

■ jmx.remote.tls.socket.factory
Chapter 4 Generic Connector 53

An object of type javax.net.ssl.SSLSocketFactory that is an already
initialized TLS socket factory. The SSLSocketFactory can be created and
initialized through the SSLContext factory. If the value of this property is not
specified, the TLS socket factory defaults to
SSLSocketFactory.getDefault().

■ jmx.remote.tls.enabled.protocols

A string that is a space-separated list of TLS protocols to enable. If the value of
this property is not specified, the TLS enabled protocols default to
SSLSocket.getEnabledProtocols().

■ jmx.remote.tls.enabled.cipher.suites

A string that is a space-separated list of TLS cipher suites to enable. If the value of
this property is not specified the TLS enabled cipher suites default to
SSLSocket.getEnabledCipherSuites().

■ jmx.remote.tls.need.client.authentication

A string that is "true" or "false" according to whether the connector server
requires client authentication. If true, a client that does not authenticate during
the handshake sequence will be refused.

■ jmx.remote.tls.want.client.authentication

A string that is "true" or "false" according to whether the connector server
requires client authentication if appropriate to the cipher suite negotiated. If true,
then if a client negotiates a cipher suite that supports authentication but that
client does not authenticate itself, the connection will be refused.

4.3.6.3 SASL Properties

The following properties control the SASL profile:

■ jmx.remote.sasl.authorization.id

A string that is the connector client’s identity for authorization when it is
different from the authentication identity. If this property is unspecified, the
provider derives an authorization identity from the authentication identity.

■ jmx.remote.sasl.callback.handler

An object of type javax.security.auth.callback.CallbackHandler that
is the callback handler to be invoked by the SASL mechanism to retrieve user
information. If this property is unspecified, no callback handler will be used.
54 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

CHAPTER 5

Defining a New Transport

The standard protocols defined by this specification might not correspond to all
possible environments. Examples of other protocols that might be of interest are:

■ A protocol that runs over a serial line to manage a JMX API agent in a device that
is not networked

■ A protocol that uses HTTP/S because it is a familiar protocol that system
administrators might be more willing to let through firewalls than RMI or JMXMP

■ A protocol that formats messages in XML (perhaps in an XML-based RPC
protocol such as SOAP) to build on an existing XML-based infrastructure. Such a
transport could potentially be used by non-Java clients

There are two ways to implement a user-defined protocol. One is to define a
transport for the generic connector using the MessageConnection and
MessageConnectionServer classes as described in Chapter 4 “Generic
Connector”. The other is to define a new provider for the JMXConnectorFactory.

Defining a transport for the generic connector has the advantage that many of the
trickier implementation details, in particular concerning listeners, are already
handled. The transport has to take care of establishing the connection and serializing
and deserializing the various Message classes. Potentially, the transport can include
other exchanges, for example to set up a secure connection, that are not the result of
a MessageConnection.writeMessage and are never seen by a
MessageConnection.readMessage. For example, this is the case for the TLS and
SASL exchanges in the JMXMP Connector.

Defining a provider for the JMXConnectorFactory is explained in the API
documentation for that class. A provider can be based on the generic connector, or it
can implement a protocol completely from scratch.
55

56 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

CHAPTER 6

Bindings to Lookup Services

This standard specifies connectors that make it possible for a JMX Remote API client
to access and manage MBeans exposed through a JMX API agent (an MBean server)
running in a remote JVM. It also defines a JMXServiceURL class, which represents
the address of a JMX Remote API connector server, and makes it possible for a client
to obtain a JMX Remote API connector connected to that server. However, this
standard does not provide any specific API that would make it possible for a client
to find the address of a connector server attached to an agent it knows about, or to
discover which agents are running, and what the addresses of the connector servers
are that make it possible to connect to them. Rather than reinventing the wheel, this
standard instead details how to advertise and find agents using existing discovery
and lookup infrastructures.

This specification discusses three such infrastructures:

■ The Service Location Protocol [SLP], as defined by [RFC 2608] and [RFC 2609]

■ The Jini Network Technology [Jini]

■ The Java Naming and Directory InterfaceTM ("J.N.D.I") API [JNDI] with an LDAP
backend

The goal of this chapter is to specify how a JMX API agent can register its connector
servers with these infrastructures, and how a JMX Remote API client can query these
infrastructures in order to find and connect to the advertised servers.

This chapter imposes no requirements on implementations of the JMX Remote API.
It details the conventions to be followed so that a server can be registered and found
by clients, without having to share special knowledge between client and server.
57

6.1 Terminology
The term JMX Remote API Agent (or agent) is used throughout this section to identify
a logical server application composed of:

■ One MBean server

■ One or more JMX Remote API connector servers allowing remote clients to access
the MBeans contained in that MBean server

The term JMX Remote API client (or client) is used to identify a logical client
application which opens a client connection with a JMX Remote API agent.

Note that a single JVM machine can contain many agents and/or clients.

6.2 General Principles
Although the APIs with which to register and query a server access point using a
lookup service vary from one infrastructure to another, the general principles remain
the same:

■ The agent creates one or more JMX Remote API connector servers

■ Then for each connector to expose, the JMXServiceURL (SLP, JNDI/LDAP) or
the JMXConnector stub (Jini networking technology, JNDI/LDAP) is registered
with the lookup service, possibly giving additional attributes which qualify the
agent and/or connector

■ The client queries the lookup service, and retrieves one or more JMXServiceURL
addresses (or JMXConnector stubs) that match the query

■ Then, it either uses the JMXConnectorFactory to obtain a JMXConnector
connected with the server identified by a retrieved JMXServiceURL (SLP, JNDI/
LDAP), or it directly connects to the server using the provided JMXConnector
stub (Jini, JNDI/LDAP)

6.2.1 JMXServiceURL Versus JMXConnector Stubs
When using SLP, it is natural to register and retrieve a service URL from the lookup
service. However, it is not as natural when using networking technologies like Jini.
In the Jini networking technology, the Service object you register and get from the
lookup service is usually a stub that directly implements the interface of the
58 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

underlying service, and not an object that gives you back some information on how
to connect to the service. Therefore this standard specifies different ways of
advertising a connector server, depending on the underlying lookup service used:

■ SLP: register the URL string representation of the JMX Service URL
(JMXServiceURL.toString()). This is natural as SLP is a URL-based protocol.
See Section 6.3 “Using the Service Location Protocol” on page 62.

■ Jini networking technology: register a JMXConnector stub. The JMXConnector
interface is directly the interface of the JMX Connector Service. See Section 6.4
“Using the Jini Network Technology” on page 66

■ JNDI API/LDAP: register the URL string representation of the JMX Service URL
(JMXServiceURL.toString()). The JNDI API can be configured on the client
side (via StateFactories and ObjectFactories - see [JNDI - Java Objects])
to create and return a new JMXConnector automatically from the DirContext
containing the JMX Service URL, or simply return the DirContext from which
that JMX Service URL can be extracted. See Section 6.5 “Using the Java Naming
and Directory Interface (LDAP Backend)” on page 72.
An alternative way to use JNDI/LDAP is to store a JMXConnector stub directly,
as described for Jini. This specification does not define a standard way to do that.

6.2.2 Lookup Attributes
All three infrastructures considered in this specification have the notion of lookup
attributes. These attributes are properties that qualify the registered services. They
are passed to the infrastructure when the service is registered, and can be used as
filters when performing a lookup.

A client can then query the lookup service to find all the connectors that match one
or more attributes. A client that obtains several services as a result of a lookup query
can also further inquire about the lookup attributes registered for those services to
determine which of the returned matching services it wants to use.

For a client to be able to format a query to the lookup service independently of the
JMX Remote API implementation used on the agent side, and to understand the
meaning of the retrieved attributes, this standard specifies a common set of JMX
Remote API lookup attributes whose semantics will be known by all agents and
clients. In the remainder of this specification we will use the term Lookup Attributes
for these.

When registering a connector server with a lookup service, an agent will:

1. Build the JMXServiceURL describing its connector server (SLP, JNDI/LDAP), or
obtain a JMXConnector stub from that server (using Jini networking technology)

2. Register that URL (SLP, JNDI/LDAP), or JMXConnector stub (using Jini
networking technology) with the lookup service
Chapter 6 Bindings to Lookup Services 59

3. Provide any additional lookup attributes that might help a client to locate the
server

TABLE 6-1 defines the set of common lookup attributes that can be provided at
connector registration and that can be used to filter the lookup. Most of these
attributes are optional: an agent can choose whether it wants to specify them when it
registers a JMXServiceURL with the lookup service.

Note – The name format of the lookup attributes is different depending on the back-
end lookup service (see Section 6.4 “Using the Jini Network Technology” on page 66)

TABLE 6-1 Lookup Attributes for Connectors

Name / ID Type
Multi-
valued Optional Description

AgentName String No Mandatory A simple name used to identify the agent
in a common way. Can also be viewed as
a logical name for the service
implemented by the agent. Makes it
possible to search for all connectors
registered by a given agent.
This specification does not define the
format of an agent name. However, the
characters colon (:) and slash (/) are
reserved for future use.
60 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

ProtocolType String No Optional The protocol type of the registered
connector, as returned by
JMXServiceURL.getProtocol().
Makes it possible to retrieve only the
connectors using a given protocol that
the client supports.

AgentHost String Yes Optional The name(s) or IP address(es) of the host
on which the agent is running. This
attribute is multivalued in order to allow
aliasing - namely, if one single host is
known under several names. This
attribute is multivalued only if the
underlying lookup protocol supports
multivalued attributes.

Property String Yes Optional A string containing a Java-like property,
in the form "<property-
name>=<value>" - for example,
"com.sun.jmx.remote.tcp.connect
.timeout=200".
This attribute is multivalued so that it
can be used to map several properties. It
might be used by agents as a means to
provide additional information to client
applications. For instance, this attribute
could be used to hold some of the
attributes that were passed to a
connector server within the environment
map at construction time. However, an
agent must not rely on the fact that a
Client will read these attributes, and a
client must not rely on the fact that an
agent will provide them. All the
information that any client will need to
connect to a specific server must be
contained in the server’s JMX Service
URL, or in its JMX API connector stub.

TABLE 6-1 Lookup Attributes for Connectors

Name / ID Type
Multi-
valued Optional Description
Chapter 6 Bindings to Lookup Services 61

6.3 Using the Service Location Protocol
The Service Location Protocol [SLP] is is an IETF standards track protocol [RFC
2608], [RFC 2609] that provides a framework to allow networking applications to
discover the existence, location, and configuration of networked services in
enterprise networks. You may wish to read the [SLP White Paper] for a concise
description of SLP, and its positioning with respect to other technologies, like
DNSSRV and LDAP.

6.3.1 SLP Implementation
The Java SLP API is the object of [JSR 140]. At the time of writing, this JSR is not yet
finalized. The code extracts in this section are based on Sun’s proprietary Java
implementation of SLP, which closely follows [RFC 2614]. Code based on other
implementations of that RFC will work similarly.

6.3.2 SLP Service URL
The JMXServiceURL defined by this standard is directly compliant with [RFC
2609]. Therefore there is a direct mapping between JMX Service URLs and SLP
Service URLs, since their String representation is identical.

6.3.3 SLP Lookup Attributes
SLP supports multivalued attribute registrations; these attributes are provided at
registration time, when registering the Service URL of the connector server. The
filtering method used for lookup is an LDAPv3 filter string. The attributes that must
or may be provided by an agent when registering a connector server URL are those
defined in Section 6.2.2 “Lookup Attributes” on page 59.

6.3.4 Code Templates
The following sections provide some code templates for SLP.
62 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

6.3.4.1 Discovering the SLP Service

With SLP, discovering the lookup service is transparent to the user; the running SLP
daemon is responsible for finding the Service Agent or Directory Agent (depending
on the configuration of the daemon).

In fact, one line is enough to locate the lookup service, as shown in
CODE EXAMPLE 6-1:

CODE EXAMPLE 6-1 Discovering the SLP Service

import com.sun.slp.ServiceLocationManager;
import com.sun.slp.ServiceLocationException;
import com.sun.slp.Advertiser;
import com.sun.slp.Locator;
...
try {

 // Getting the Advertiser (for registration purposes)
Advertiser slpAdvertiser = ServiceLocationManager.getAdvertiser(Locale.US);

 // Getting the Locator (for lookup purposes)
 Locator slpLocator = ServiceLocationManager.getLocator(Locale.US);

} catch(ServiceLocationException e) {...}
Chapter 6 Bindings to Lookup Services 63

6.3.4.2 Registering a JMX Service URL With SLP

The class Advertiser is used to perform the SLP registrations, as shown in
CODE EXAMPLE 6-2:

CODE EXAMPLE 6-2 Registering a Service URL With SLP

import com.sun.slp.ServiceURL;
import com.sun.slp.ServiceLocationAttribute;
...
try {

 // Create a new JMXMPConnectorServer, let the system allocate a
// a port number.
//

 JMXServiceURL jmxUrl = new JMXServiceURL("service:jmx:jmxmp://myhost:0");
 final JMXConnectorServer cserver = new JMXMPConnectorServer(jmxUrl,null);

// Get the Connector Server address
 final JMXServiceURL srvAddr = cserver.getAddres();

 // Note: It is recommended that the JMX Agents make use of the leasing
 // feature of SLP, and periodically renew their lease.
 final ServiceURL serviceURL =
 new ServiceURL(srvAddr.toString(), ServiceURL.LIFETIME_DEFAULT);

final Vector attributes = new Vector();
 final Vector attrValues = new Vector();

 // Using the default SLP scope
 attrValues.add("DEFAULT");

final ServiceLocationAttribute attr1 =
 new ServiceLocationAttribute("SCOPE", attrValues);
 attributes.add(attr1);

 // AgentName attribute
 attrValues.removeAllElements();

 attrValues.add(new String("my-jmx-agent"));
 final ServiceLocationAttribute attr2 =
 new ServiceLocationAttribute("AgentName", attrValues);
 attributes.add(attr2);

 ...
 // Registration
 slpAdvertiser.register(serviceURL, attributes);

} catch(ServiceLocationException e) {...}
64 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

6.3.4.3 Looking up a JMX Service URL With SLP

The class Locator is used to perform the SLP lookup, as shown in
CODE EXAMPLE 6-3:

CODE EXAMPLE 6-3 Looking up a JMX Service URL With SLP

import com.sun.slp.ServiceType;
import com.sun.slp.ServiceLocationEnumeration;
...
try {
 // lookup in default SCOPE.

 final Vector scopes = new Vector();
 scopes.add("DEFAULT");

 // Set the LDAPv3 query string
// Here we look for a specific agent called "my-jmx-agent",
// but we could have asked for any agent by using a wildcard:
// final String query = "(&(AgentName=*))";

 //
 final String query = "(&(AgentName=my-jmx-agent))";

 // lookup
 final ServiceLocationEnumeration result =

slpLocator.findServices(new ServiceType("service:jmx"), scopes, query);

// Extract the list of returned ServiceURL
 while(result.hasMoreElements()) {
 final ServiceURL surl = (ServiceURL) result.next();

 // Get the attributes
 final ServiceLocationEnumeration slpAttributes =

 slpLocator.findAttributes(surl, scopes, new Vector());

 while(slpAttributes.hasMoreElements()) {
 final ServiceLocationAttribute slpAttribute =

 (ServiceLocationAttribute) slpAttributes.nextElement();
 ...
 }

 // Open a connection
 final JMXServiceURL jmxUrl = new JMXServiceURL(surl.toString());

 final JMXConnector client = JMXConnectorFactory.connect(jmxUrl);
 ...
 }
} catch(ServiceLocationException e) {...}
Chapter 6 Bindings to Lookup Services 65

6.4 Using the Jini Network Technology
The Jini Network Technology [Jini] is an open software architecture that enables
developers to create network-centric services that are highly adaptive to change.

The Jini specification offers a standard lookup service. A running Jini lookup service
can be discovered with a simple API call. A remote service (device, software,
application, etc.) that wants to be registered in the Jini lookup service provides a
serializable Java object. When looked up by a remote client, a copy of this Java object
is returned. Usually, this object acts as a proxy to the remote service.

In addition, Jini networking technology offers various APIs and mechanisms to
download code from a remote HTTP server (necessary to get the classes required for
instantiating the proxy objects), and the Jini specification supports security for code
download based on the RMI security manager.

6.4.1 Jini Networking Technology Implementation
The Jini networking technology is Java-based software the implementation of which
is available for download under the Sun Community Source Licence v3.0 (with Jini
Technology Specific Attachment v1.0). See http://wwws.sun.com/software/
communitysource/jini/download.html

6.4.2 Service Registration
The Jini specification is based on service registration. A service is registered through
a serializable Java object, which can be a stub, a proxy or a simple class providing
information about the service. Usually, the registered service is a stub which
provides a direct link to the underlying service. Thus, although it would be possible
to use the JMXServiceURL as the service, this standard specifies the use of a JMX
Remote API connector stub, implementing the JMXConnector interface, as the
service. This is consistent with the Jini specification’s philosophy, where objects
retrieved from the Jini lookup service are usually proxies implementing the interface
of the service looked up.

The Jini lookup service, which uses Java RMI marshalling and dynamic class loading
semantics, will make use of RMI annotations to download automatically from the
server side all the classes needed to deserialize the service object on the client side.
This makes it possible for a server to register any private implementation class, and
for a client to use that class (through its generic JMXConnector interface) without
any a-priori knowledge of the server implementation. However, this requires a
66 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

http://wwws.sun.com/software/communitysource/jini/download.html

certain amount of configuration from the server-side. This standard completely
specifies the JMX Remote API connector stubs for the protocols it describes, so that
an instance of such a class serialized from the JMX Remote API implementation on
the server side can be deserialized in an instance of the same class using the
implementation on the client side, without having to download any new classes.
Thus, no special configuration is needed on the server side when using standard
connectors. Providers and users of non-standard connectors should however
perform the required configuration steps if they want to make their non-standard
connectors available to generic JMX API clients.

6.4.3 Using JMX Remote API Connector Stubs
When registering a JMX Remote API connector stub, the server application will
either call the JMXConnectorFactory.newConnector method to obtain an
unconnected stub, or call the toJMXConnector method on the
JMXConnectorServer it wants to register. The toJMXConnector method returns
a serializable connector stub that can be directly registered as the service provided
by that connector.

When the client looks up the registered connector from the Jini lookup service, the
returned connector stub is not yet connected to its corresponding server. The client
application needs to call the JMXConnector.connect() method on that object
before using it.

Calling JMXConnector.connect() on the server side is shown in
CODE EXAMPLE 6-4:

CODE EXAMPLE 6-4 Calling JMXConnector.connect() on the Server Side

// get the connector stub:
JMXConnector c = server.toJMXConnector(null);

// register c as the Jini Service.
...
Chapter 6 Bindings to Lookup Services 67

Calling JMXConnector.connect() on the client side, as shown in
CODE EXAMPLE 6-5:

6.4.4 Jini Lookup Service Attributes
Like SLP, the Jini lookup service supports the specification of additional lookup
attributes, called entries. The Java class of these attributes must implement the
net.jini.core.entry.Entry interface. The Name entry defined by the Jini
specification is interpreted as meaning the AgentName as defined in Section 6.2.2
“Lookup Attributes” on page 59. As this specification was being completed, the
other entries were being standardized through the Jini Community Decision Process
(JDP). Refer to the JMX technology home page for current information:

http://java.sun.com/products/JavaManagement/

6.4.5 Code Templates
The following sections provide some code templates for the Jini lookup service:

CODE EXAMPLE 6-5 Calling JMXConnector.connect() on the Client Side

// Obtain the service from Jini
Object service = ...
JMXConnector c = (JMXConnector) service;

// Build the env Map, add security parameters,
Map env = new HashMap();
env.put(...)

// Connect with the server
c.connect(env);
68 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

6.4.5.1 Discovering the Jini Lookup Service

The Jini lookup service is represented by the
net.jini.core.lookup.ServiceRegistrar class. There are two ways to
discover the Jini lookup service. The first and most simple way assumes that you
know the address of the lookup service, as shown in CODE EXAMPLE 6-6:

The second solution uses a broadcast mechanism to retrieve the lookup services
running on the accessible network, as shown in CODE EXAMPLE 6-7:

CODE EXAMPLE 6-6 Discovering the Jini Lookup Service Using an Address

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.discovery.LookupLocator;
...
LookupLocator lookup = new LookupLocator("jini://my_host");
ServiceRegistrar registrar = lookup.getRegistrar();

CODE EXAMPLE 6-7 Discovering the Jini Lookup Service Using a Broadcast Mechanism

import net.jini.discovery.LookupDiscovery;
import net.jini.discovery.DiscoveryListener;
import net.jini.discovery.DiscoveryEvent;
import net.jini.core.lookup.ServiceRegistrar;
...
LookupDiscovery lookupDiscovery = null;
try {
 lookupDiscovery = new LookupDiscovery(null);
} catch (IOException e) {...}

lookupDiscovery.addDiscoveryListener(new LookupDiscoveryListener());

private class LookupDiscoveryListener implements DiscoveryListener {

 public LookupDiscoveryListener() {
}

 public void discovered(DiscoveryEvent evnt) {
 ServiceRegistrar[] regs = evnt.getRegistrars();
 for(int i = 0; i < regs.length; i++) {
Chapter 6 Bindings to Lookup Services 69

6.4.5.2 Registering a JMX Remote API Connector Stub With the Jini
Lookup Service

Registering a JMX Remote API Connector Stub with the Jini Lookup Service is
shown in CODE EXAMPLE 6-8:

 String[] regGroups = regs[i].getGroups();
 // Must verify here that the ServiceRegistrar
 // contains the groups I want to register in...
 }

 // It is generally better here to launch another Thread to use
 // the discovered ServiceRegistrar; this avoids blocking the
 // discovery process.
 }

 public void discarded(DiscoveryEvent evnt) {}
}

CODE EXAMPLE 6-8 Registering a JMX Remote API Connector Stub With the Jini Lookup
Service

import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.lookup.ServiceItem;
import net.jini.core.lookup.ServiceRegistration;
import net.jini.core.entry.Entry;
import net.jini.core.lease.Lease;
import java.rmi.RemoteException;
...
// Get the Jini ServiceRegistrar with one of the above methods
ServiceRegistrar registrar = ...;

// Get a connector stub for the server you want to export
//
JMXConnector proxy = jmxConnectorServer.toJMXConnector(null);

// Prepare Service’s attributes entry
Entry[] serviceAttrs = new Entry[] {
 new net.jini.lookup.entry.Name("MyAgentName");
 // Add here the lookup attributes you want to specify.
};

CODE EXAMPLE 6-7 Discovering the Jini Lookup Service Using a Broadcast Mechanism
70 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

6.4.5.3 Looking up a JMX Connector Stub From the Jini Lookup
Service

Looking up a JMX Connector stub from the Jini lookup service is shown in
CODE EXAMPLE 6-9:

// Create a ServiceItem from the service instance
ServiceItem srvcItem = new ServiceItem(null, proxy, serviceAttrs);

// Register the Service with the Lookup Service
try {

 ServiceRegistration srvcRegistration =
 registrar.register(srvcItem, Lease.ANY);
 System.out.println("Registered ServiceID: " +
 srvcRegistration.getServiceID().toString());
} catch(RemoteException e) {...}

CODE EXAMPLE 6-9 Looking up a JMX Connector Stub From the Jini Lookup Service

import net.jini.core.lookup.ServiceTemplate;
import net.jini.core.lookup.ServiceMatches;
import net.jini.core.lookup.ServiceRegistrar;
import net.jini.core.entry.Entry;
...
// Get the Jini ServiceRegistrar with one of the above methods
ServiceRegistrar registrar = ...;

// Prepare Service’s attributes entry to be matched
Entry[] serviceAttrs = new Entry[] {
 // Retrieve all services for which a Name entry was registered,
 // whatever the name is (null = wildcard).
 new net.jini.lookup.entry.Name(null)

 // Add here any other matching attribute.

};

// Look for a specific JMXMP Connector (you may also pass
// JMXConnector.class if you wish to get all types of JMXConnector)
//
ServiceTemplate template = new ServiceTemplate(null,

CODE EXAMPLE 6-8 Registering a JMX Remote API Connector Stub With the Jini Lookup
Service
Chapter 6 Bindings to Lookup Services 71

6.5 Using the Java Naming and Directory
Interface (LDAP Backend)
The Java Naming and Directory Interface [JNDI] is a standard extension to the Java
platform, providing Java technology-enabled applications with a unified interface to
multiple naming and directory services in the enterprise. In particular, it provides a
means to access X.500 directory services through the Lightweight Directory Access
Protocol (LDAP). This standard defines how an LDAP server can be used to store
information about JMX API agents, and how JMX Remote API clients can look up
this information to connect to the agents.

 new Class[] {JMXMPConnector.class}, serviceAttrs);

ServiceMatches matches = null;
try {
 matches = registrar.lookup(template, Integer.MAX_VALUE);
} catch (RemoteException e) {...}

// Retrieve the JMX Connector and initiate a connection
for(int i = 0; i < matches.totalMatches; i++) {
 if(matches.items[i].service != null) {

 // Get the JMXConnector
 JMXConnector c = (JMXConnector)(matches.items[i].service);

 // Prepare env (security parameters etc...)
 Map env = new HashMap();

 env.put(...);

 // Initiate the connection
 c.connect(env);

 // Get the remote MBeanServer handle
 MBeanServerConnection server = c.getMBeanServerConnection();
 ...
 }
}

CODE EXAMPLE 6-9 Looking up a JMX Connector Stub From the Jini Lookup Service
72 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

A good understanding of using JNDI API with an LDAP backend can be obtained
by following the [LDAP Thread in the JNDI Tutorial].

6.5.1 LDAP Schema for Registration of JMX Connectors
Nodes in the LDAP directory tree are typed. A node can have several object classes.
JMX Connectors should be registered in nodes of class jmxConnector. The
jmxConnector class contains two attributes, which are the JMX Service URL of the
corresponding connector (jmxServiceURL), and the name of the JMX API agent
exporting this connector (jmxAgentName). The JMX Service URL can be absent if
the agent is not accepting connections. The jmxConnector class also includes
optional attributes, like jmxAgentHost and jmxProtocolType. The agent name
makes it possible for a client application to get a connection to an agent it knows by
name. Together with the jmxAgentHost and jmxProtocolType it also makes it
possible to perform filtered queries, for instance, "find all the JMXMP connectors of
<this> JMX API agent" or "find all connectors of all agents running on <that> node".
CODE EXAMPLE 6-10 is the schema definition (as specified in [RFC 2252]) that should
be used to register JMX Remote API connectors:

CODE EXAMPLE 6-10 LDAP Schema for Registration of JMX Remote API Connectors

-- jmxServiceURL attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.1 NAME ’jmxServiceURL’
 DESC ’String representation of a JMX Service URL’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

-- jmxAgentName attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.2 NAME ’jmxAgentName’
 DESC ’Name of the JMX Agent’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

-- jmxProtocolType attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.3 NAME ’jmxProtocolType’
 DESC ’Protocol used by the registered connector’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

-- jmxAgentHost attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.4 NAME ’jmxAgentHost’
 DESC ’Names or IP Addresses of the host on which the
 agent is running. When multiple values are
 given, they should be aliases to the same host.’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)
Chapter 6 Bindings to Lookup Services 73

The jmxConnector class is an AUXILIARY class, which means that its properties
can be added to any node in the directory tree - namely, it does not impose any
restriction on the structure of the directory tree.

To create a node in the directory tree, you also need a STRUCTURAL class. This
specification does not impose any restriction on the structural classes that can
contain JMX Remote API connectors. You can, for instance, reuse the
javaContainer class from the Java Schema [JNDI - Java Schema] as defined in [RFC

-- jmxProperty attribute is an IA5 String
(1.3.6.1.4.1.42.2.27.11.1.5 NAME ’jmxProperty’
 DESC ’Java-like property characterizing the registered object.
 The form of each value should be: "<property-name>=<value>".
 For instance: "com.sun.jmx.remote.tcp.timeout=200"’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

-- jmxExpirationDate attribute is a Generalized Time
-- see [RFC 2252] - or X.208 for a description of
-- Generalized Time
(1.3.6.1.4.1.42.2.27.11.1.6 NAME ’jmxExpirationDate’
 DESC ’Date at which the JMX Service URL will

 be considered obsolete and can be removed
 from the directory tree’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE)

-- from RFC-2256 --
(2.5.4.13 NAME ’description’
 EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{1024})

-- jmxConnector class - represents a JMX Connector.
-- must contain the JMX Service URL
-- and the JMX Agent Name
(1.3.6.1.4.1.42.2.27.11.2.1 NAME ’jmxConnector’
 DESC ’A class representing a JMX Connector, and

 containing a JMX Service URL.
 The jmxServiceURL is not present if the server
 is not accepting connections’
 AUXILIARY
 MUST (jmxAgentName)
 MAY (jmxServiceURL $ jmxAgentHost $ jmxProtocolType $

 jmxProperty $ jmxExpirationDate $ description))

CODE EXAMPLE 6-10 LDAP Schema for Registration of JMX Remote API Connectors
74 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

2713], namely, create a node whose object classes would be javaContainer
(STRUCTURAL) and jmxConnector (AUXILIARY). The node containing the
jmxConnector can also have any additional auxiliary classes.

6.5.2 Mapping to Java Objects
This specification only requires that the JMX Service URL is stored in LDAP. JMX
API agents can additionally store a serialized JMX Remote API connector stub, but
this is not required by this specification. Clients should only rely on the JMX Service
URL. The JNDI API makes it possible for a client to use StateFactories and
ObjectFactories [JNDI - Java Objects] to recreate a JMXConnector from the
URL when performing a lookup(), even if there is no Java Object bound to the
containing DirContext. Alternatively, a client can directly retrieve the
jmxServiceURL attribute to obtain a JMXConnector from the
JMXConnectorFactory. Whether the JNDI API lookup() returns a
JMXConnector or a DirContext depends on the configuration settings on the
client side (InitialContext), and remains local to that client.

6.5.3 Structure of the JMX Remote API Registration
Tree
The actual structure of a directory varies from one organization to another. Each
organization, or enterprise, has its own directory tree structure, with guidelines,
policies, etc. In order for JMX API agents to be able to integrate with any pre-
existing directory structure, this specification does not impose a fixed directory tree
structure for registering agents and JMX Remote API connector servers. Connectors
must simply be located in nodes of the class jmxConnector. This makes it possible
for an organization to set up its own structure for registering agents in an LDAP
server. For instance, if an organization has an existing directory containing a node
for each host in its network, it could decide to register each agent below the node of
the host it is running on.
Chapter 6 Bindings to Lookup Services 75

6.5.4 Leasing
JNDI/LDAP does not provide any built-in lease service. If an agent goes down, its
service URLs might remain in the directory server forever . The
jmxExpirationDate attribute in the jmxConnector auxiliary class can be used to
avoid that happening, as shown in CODE EXAMPLE 6-11:

A JMX API agent would have to update the jmxExpirationDate attribute
periodically. A Directory administrator might then write a daemon that would
remove the jmxConnector nodes (or more generically the jmxServiceURL
attributes) for which the jmxExpirationDate is obsolete.

6.5.5 Code Templates
The following sections provide some code templates for the JNDI API lookup service

6.5.5.1 Discovering the LDAP Server

JNDI/LDAP does not provide any standard means for discovering the LDAP server.
Assuming the standard port (389) on the local host is the entry point is usually not
an option, since the LDAP server is usually centralized, rather than having one
server per host. The JNDI API specifies a means to discover the LDAP server(s)
through DNS [JNDI - LDAP Servers Discovery], but this is operating system
dependent, and not always feasible either since the LDAP servers cannot always be
registered in DNS. This specification thus does not address the issue of discovering
the LDAP server.

The JNDI API tutorial gives an example of how to configure an InitialContext
with a list of LDAP URLs [JNDI - Multi URL].

CODE EXAMPLE 6-11 Leasing using the jmxExpirationDate Attribute

-- jmxExpirationDate attribute is a Generalized Time
 -- see [RFC 2252] - or X.208 for a description of
 -- Generalized Time
 (1.3.6.1.4.1.42.2.27.11.1.6 NAME ’jmxExpirationDate’

 DESC ’Date at which the JMX Service URL will
 be considered obsolete and may be removed
 from the directory tree’
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24 SINGLE-VALUE)
76 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

6.5.5.2 Registering a JMXServiceURL in the LDAP server

This specification does not impose any structure on the directory tree for registering
JMX Service URLs. It is assumed that the JMX API agent knows where to register its
connectors, either from configuration, or from some built-in logic adapted to the
environment in which it is running. This specification defines the form of the data
that is registered in the directory (the how rather than the where), so that any JMX
Remote API client can look it up in a generic way. See CODE EXAMPLE 6-12.

CODE EXAMPLE 6-12 Registering a JMXServiceURL in the LDAP server

import javax.naming.InitialContext;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attribute;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttributes;
...

// Create initial context
Hashtable env = new Hashtable(11);
env.put(InitialContext.PROVIDER_URL, ldapServerUrls);
env.put(...);
InitialContext root = new InitialContext(env);

// Assuming that the Directory Administrator has created a
// context for this agent, get the DN of that context
// from configuration (e.g. Java property)
// String myOwnLdapDN =
// System.getProperty("com.sun.jmx.myapplication.dn");
String myOwnLdapDN =
DirContext myContext = (DirContext)root.lookup(myOwnLdapDN);

// Create connector server
JMXServiceURL jmxUrl = new

 JMXServiceURL("service:jmx:jmxmp://localhost:9999");
JMXConnectorServer connectorServer =
 JMXConnectorServerFactory.newJMXConnectorServer(jmxUrl, null, null);

// Prepare attributes for register connector server
Attributes attrs = new BasicAttributes();

// Prepare objectClass attribute: we’re going to create
// a javaContainer (STRUCTURAL) containing a
// jmxConnector (AUXILIARY).
Chapter 6 Bindings to Lookup Services 77

Attribute objclass = new BasicAttribute("objectClass");
objclass.add("top");
objclass.add("javaContainer");
objclass.add("jmxConnector");
attrs.put(objclass);

// Add jmxServiceURL of the connector.
attrs.put("jmxServiceURL",jmxUrl.toString());

// Add jmxAgentName
attrs.put("jmxAgentName","MyAgentName");

// Add optional attributes, if needed
attrs.put("jmxProtocolType","jmxmp");
attrs.put("jmxAgentHost",InetAddress.getLocalHost().getHostName());

// Now create the sub context in which to register the URL
// of the JMXMP connector.
// (we assume that the subcontext does not exist yet -
// ideally the agent should contain some more complex logic:
// if the context already exists, simply modify its attributes,
// otherwise, create it with its attributes).
myContext.createSubcontext("cn=service:jmx:rmi", attrs);

CODE EXAMPLE 6-12 Registering a JMXServiceURL in the LDAP server
78 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

6.5.5.3 Looking up a JMX Service URL From the LDAP Server

CODE EXAMPLE 6-13 shows how to look up a JMX service URL from the LDAP server.

CODE EXAMPLE 6-13 Looking up a JMX Service URL From the LDAP Server

import javax.naming.InitialContext;
import javax.naming.NamingEnumeration;
import javax.naming.directory.DirContext;
import javax.naming.directory.Attribute;
import javax.naming.directory.Attributes;
import javax.naming.directory.SearchResult;
import javax.naming.directory.SearchControls;
...

// Create initial context
Hashtable env = new Hashtable();
env.put(InitialContext.PROVIDER_URL, ldapServerUrls);
env.put(...);
InitialContext root = new InitialContext(env);

// Prepare search filter
String filter = "(&(objectClass=jmxConnector) (jmxServiceURL=*))";

// Prepare the search controls
SearchControls ctrls = new SearchControls();

// Want to get all jmxConnector objects, wherever they’ve been
// registered.
ctrls.setSearchScope(SearchControls.SUBTREE_SCOPE);

// Want to get only the jmxServiceURL (comment this line and
// all attributes will be returned).
ctrls.setReturningAttributes(new String[] { "jmxServiceURL" });

// Search...
final NamingEnumeration results = root.search("", filter, ctrls);

// Get the URL...
for (;results.hasMore();) {
 final SearchResult res = (SearchResult) results.nextElement();
Chapter 6 Bindings to Lookup Services 79

6.6 Registration With Standards Bodies
In parallel with the completion of this specification, the following registrations are
being made with standards bodies:

■ For SLP, the jmx service type and associated service template are being registered
with IANA

■ For LDAP, the OIDs for the lookup attributes defined in Section 6.5.1 “LDAP
Schema for Registration of JMX Connectors” on page 73 are defined in Sun’s OID
namespace

■ For the Jini networking technology, the entries for the lookup attributes are being
defined through the Jini Community Decision Process (JDP)

 final Attributes attrs = res.getAttributes();
 final Attribute attr = attrs.get("jmxServiceURL");
 final String urlStr = (String)attr.get();

 // Make a connector...
 final JMXServiceURL url = new JMXServiceURL(urlStr);
 final JMXConnector conn =
 JMXConnectorFactory.newConnector(url,null);

 // Start using the connector...
 conn.connect(null);
 ...
}

CODE EXAMPLE 6-13 Looking up a JMX Service URL From the LDAP Server
80 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

CHAPTER 7

Summary of Environment
Parameters

The environment parameters defined by this standard all begin with the string
"jmx.remote.". Implementations that define further parameters can use one of the
following conventions:

■ The reverse domain name convention used by Java platform packages, for
example "com.sun.jmx.remote.something"

■ A name beginning with the string "jmx.remote.x." (including the final period)

An implementation must not define non-standard parameters that begin with
"jmx.remote." unless they begin with "jmx.remote.x.".

Names beginning with "jmx.remote.x." can be shared between different
implementations. They are useful for agreed-on experimental extensions, but they
run the risk of collision, where two implementations use the same name to mean
two different things.

In TABLE 7-1, each parameter is defined by the following characteristics:

■ The name after the initial "jmx.remote." string

■ The type that the associated value must have

■ Whether the parameter applies to connector clients, to connector servers, or both

■ For server parameters, whether the parameter is visible, that is whether it appears
in the Map returned by JMXConnectorServerMBean.getAttributes()
81

TABLE 7-1 Environment Parameters

Name jmx.remote.+ Type
Client/
Server Visible Meaning

authenticator JMXAuthen
-ticator

Server No Object to authenticate
incoming connections to the
connector. See Section 3.4
“Basic Security With the RMI
Connector” on page 38, and
Section 4.3.6.1 “Global
Properties of the Generic
Connector” on page 53.

context Object Both No Context transmitted during
handshake. See Section 4.3.6
“Properties Controlling Client
and Server” on page 53

credentials Object Client N/A Client credentials to
authenticate to the RMI
connector server. See
Section 3.4 “Basic Security
With the RMI Connector” on
page 38

default.class.
loader

Class
Loader

Both No Default class loader to
deserialize objects received
from the other end of a
connection. See Section 2.11
“Class Loading” on page 28

default.class.
loader.name

Object
Name

Server Yes Name of class loader MBean
that will be used to
deserialize objects received
from the client. See
Section 2.11 “Class Loading”
on page 28

jndi.rebind String Server Yes “true” or “false” according as
an RMI stub object can
overwrite an existing object at
the JNDI address specified in
a JMXServiceURL

message.connection MessageCo
nnection

Client N/A Object describing the
transport used by the Generic
Connector. See Section 4.1
“Pluggable Transport
Protocol” on page 41
82 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

message.connection
.server

MessageCo
nnectionS
erver

Server No Object describing the
transport used by the Generic
ConnectorServer. See
Section 4.1 “Pluggable
Transport Protocol” on
page 41

object.wrapping ObjectWra
pping

Both No Object describing how
parameters with non-default
serialization are handled. See
Section 4.2 “Pluggable Object
Wrapping” on page 42

profiles String Both Yes List of profiles proposed
(server) or required (client)
by the connector. See
Section 4.3.6 “Properties
Controlling Client and
Server” on page 53

protocol.provider.
class.loader

Class
Loader

Client N/A See JMXConnectorFactory
documentation.

protocol.provider.
pkgs

String Client N/A See JMXConnectorFactory
documentation.

rmi.client.socket.
factory

RMIClient
Socket
Factory

Server No Client socket factory for
connections to the RMI
connector. See Section 3.4
“Basic Security With the RMI
Connector” on page 38

rmi.server.socket.
factory

RMIServer
Socket
Factory

Server No Server socket factory for
connections to the RMI
connector. See Section 3.4
“Basic Security With the RMI
Connector” on page 38

sasl.authorization
.id

String Client N/A Authorization ID when this is
different from the
authentication ID . See
Section 4.3.6 “Properties
Controlling Client and
Server” on page 53

sasl.callback.
handler

Callback
Handler

Both No Callback handler for SASL
mechanism. See Section 4.3.6
“Properties Controlling Client
and Server” on page 53

TABLE 7-1 Environment Parameters

Name jmx.remote.+ Type
Client/
Server Visible Meaning
Chapter 7 Summary of Environment Parameters 83

server.address.
wildcard

String Server Yes "true" or "false" according
to whether connector server
should listen on all local
network interfaces or just
one. See
JMXMPConnectorServer
documentation.

tls.enabled.cipher
.suites

String Both Yes TLS cipher suites to enable.
See Section 4.3.6 “Properties
Controlling Client and
Server” on page 53

tls.enabled.
protocols

String Both Yes TLS protocols to enable. See
Section 4.3.6 “Properties
Controlling Client and
Server” on page 53

tls.need.client.
authentication

String Server Yes "true" or "false" according
to whether connector server
requires client authentication.
See Section 4.3.6 “Properties
Controlling Client and
Server” on page 53

tls.socket.factory SSLSocket
Factory

Both No TLS socket factory for this
connector. See Section 4.3.6
“Properties Controlling Client
and Server” on page 53

tls.want.client.
authentication

String Server Yes "true" or "false" according
to whether connector server
requires client authentication
if supported by the
negotiated cipher suite. See
Section 4.3.6 “Properties
Controlling Client and
Server” on page 53

TABLE 7-1 Environment Parameters

Name jmx.remote.+ Type
Client/
Server Visible Meaning
84 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

APPENDIX A

Service Templates

This appendix defines the service templates that describe the service:jmx services
in conformance to [RFC 2609]. These service template are a formal description of the
bindings between the Service Location Protocol and JSR 160 connectors.

Note – The following templates are a copy of the submissions that have been made
to svrloc-list@iana.org.

A.1 Service Template for the service:jmx
Abstract Service Type
■ Template Filename: jmx.1.0.en

■ Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

■ Language of service template: en

■ Security considerations:

Security is defined by each of the concrete service types.

See those templates for further details.

■ TemplateText:

CODE EXAMPLE A-1 Service template for the service:jmx Abstract Service Type

Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

Language of service template: en

Security considerations:

 Security is defined by each of the concrete service types.

 See those templates for further details.
85

TemplateText:

-------------------------template begins here-----------------------

template-type=jmx

template-version=1.0

template-description=

 This is an abstract service type. The purpose of the jmx service

 type is to organize in a single category all JMX Connectors that

 make it possible to access JMX Agents remotely.

 JMX Connectors are defined by the Java Specification Request 160

 (JSR 160). More information on JSR 160 can be obtained from the

 Java Community Process Home Page at:

 http://www.jcp.org/en/jsr/detail?id=160

template-url-syntax=

 url-path= ; Depends on the concrete service type.

AgentName= string L

The name of the JMX Agent - see JSR 160 specification.

ProtocolType= string O L

The type of the protocol supported by the JMX Connector.

Currently only two protocols are mandatory in the specification: "rmi" and

"iiop". A third optional protocol is also standardized: "jmxmp".

However this could be extended in the future to support other types

of protocols, e.g. "http", "https", "soap", "beep", etc...

Thus, the allowed values of this attribute are at least "rmi" and "iiop"

for every implementation; additionally "jmxmp" for implementations that

support it; and other protocol names that are understood by client and

server.

The value of this attribute is the same as the protocol name that appears

after "service:jmx:" in the Service URL. Registering the ProtocolType

attribute means clients can search for connectors of a particular type.

AgentHost= string O M L

The host name or IP address of the host on which the JMX Agent is running.

If multiple values are given they must be aliases to the same host.

Property= string O M L

Additional properties qualifying the agent, in the form of Java-like

properties, e.g. "com.sun.jmx.remote.connect.timeout=200"

CODE EXAMPLE A-1 Service template for the service:jmx Abstract Service Type
86 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

A.2 Service Template for the
service:jmx:jmxmp Concrete Service
Type
■ Template Filename: jmx:jmxmp.1.0.en

■ Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

■ Language of service template: en

■ Security considerations:

Security for the JMXMP connector is defined by JSR 160 specification and is
based on SASL mechanisms.

For further details please refer to JSR 160 specification available at

http://www.jcp.org/en/jsr/detail?id=160

■ TemplateText:

Note that in order to include '=' in an attribute value, it must be

escaped. Thus the example would be encoded as

"com.sun.jmx.remote.connect.timeout\3D200"

-------------------------template ends here-----------------------

CODE EXAMPLE A-2 Service Template for the service:jmx:jmxmp Concrete Service
Type

Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

Language of service template: en

Security considerations:

 Security for the JMXMP connector is defined by JSR 160

 specification and is based on SASL mechanisms.

 For further details please refer to JSR 160 specification

 available at http://www.jcp.org/en/jsr/detail?id=160

TemplateText:

-------------------------template begins here-----------------------

template-type=jmx:jmxmp

CODE EXAMPLE A-1 Service template for the service:jmx Abstract Service Type
Appendix A Service Templates 87

http://www.jcp.org/en/jsr/detail?id=160

A.3 Service Template for the
service:jmx:rmi Concrete Service
Type
■ Template Filename: jmx:rmi.1.0.en

■ Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

■ Language of service template: en

■ Security considerations:

Java Specification Request (JSR) 160 defines a secure configuration of the
jmx:rmi connector, based on SSL socket factories.

For further details please refer to JSR 160 specification available at

http://www.jcp.org/en/jsr/detail?id=160

template-version=1.0

template-description=

 This template describes the JMXMP Connector defined by JSR 160.

 More information on this connector can be obtained from the

 JSR 160 specification available from the JCP Home Page at:

 http://www.jcp.org/en/jsr/detail?id=160

template-url-syntax=

 url-path= ; There is no URL path defined for a jmx:jmxmp URL.

Example of a valid Service URL:

service:jmx:jmxmp://myhost:9876

There are no default values for the host or port number, so in

general these must be supplied when registering the URL.

-------------------------template ends here-----------------------

CODE EXAMPLE A-2 Service Template for the service:jmx:jmxmp Concrete Service
Type
88 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

http://www.jcp.org/en/jsr/detail?id=160

■ TemplateText:

CODE EXAMPLE A-3 Service Template for the service:jmx:rmi Concrete Service Type

Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

Language of service template: en

Security considerations:

 Java Specification Request (JSR) 160 defines a secure

 configuration of the jmx:rmi connector, based on SSL socket

 factories.

 For further details please refer to JSR 160 specification

 available at http://www.jcp.org/en/jsr/detail?id=160

TemplateText:

-------------------------template begins here-----------------------

template-type=jmx:rmi

template-version=1.0

template-description=

 This template describes the RMI Connector defined by JSR 160.

 More information on this connector can be obtained from the

 JSR 160 specification available from the JCP Home Page at:

 http://www.jcp.org/en/jsr/detail?id=160

template-url-syntax=

 url-path = jndi-path / stub-path

 stub-path = "/stub/" *xchar

 ; serialized RMI stub encoded as BASE64 without newlines

 jndi-path = "/jndi/" *xchar

 ; name understood by JNDI API, shows where RMI stub is stored

 ; The following rules are extracted from RFC 2609

 safe = "$" / "-" / "_" / "." / "~"

 extra = "!" / "*" / "'" / "(" / ")" / "," / "+"

 uchar = unreserved / escaped

 xchar = unreserved / reserved / escaped

 escaped = 1*(`\' HEXDIG HEXDIG)

 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"

 unreserved = ALPHA / DIGIT / safe / extra

Examples of the stub form:

service:jmx:rmi://myhost:9999/stub/rO0ABX<270 chars deleted>gAAAeA==

service:jmx:rmi:///stub/rO0ABX<270 chars deleted>gAAAeA==

This form contains the serialized form of the Java object representing

the RMI stub, encoded in BASE64 without newlines. It is generated by

the connector server, and is not intended to be human-readable.
Appendix A Service Templates 89

A.4 Service Template for the
service:jmx:iiop Concrete Service
Type
■ Template Filename: jmx:iiop.1.0.en

■ Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

■ Language of service template: en

■ Security considerations:

There is no special security defined for the jmx:iiop connector, besides the
mechanisms provided by RMI over IIOP itself. In its default configuration, the
jmx:iiop connector is not secure. Applications that are concerned with
security should therefore not advertise their jmx:iiop connectors through
this template, unless they have taken the appropriate steps to make it secure.

For further details please refer to JSR 160 specification available at

http://www.jcp.org/en/jsr/detail?id=160

#

Examples of the JNDI form:

service:jmx:rmi://myhost:9999/jndi/ldap://namehost:389/a=b,c=d

service:jmx:rmi:///jndi/ldap://namehost:389/a=b,c=d

If the client has an appropriate JNDI configuration, it can use

a URL such as this:

service:jmx:rmi:///jndi/a=b,c=d

#

In both the /stub/ and /jndi/ forms, the hostname and port number

(myhost:9999 in the examples) are not used by the client and, if

present, are essentially comments. The connector server address

is actually stored in the serialized stub (/stub/ form) or in the

directory entry (/jndi/ form).

#

For more information, see the JSR 160 specification, notably the

package javax.management.remote.rmi.

-------------------------template ends here-----------------------

CODE EXAMPLE A-3 Service Template for the service:jmx:rmi Concrete Service Type
90 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

http://www.jcp.org/en/jsr/detail?id=160

■ TemplateText:

CODE EXAMPLE A-4

Name of submitter: JSR-160 Expert Group <jsr-160-comments@jcp.org>

Language of service template: en

Security considerations:

There is no special security defined for the jmx:iiop connector,

besides the mechanisms provided by RMI over IIOP itself. In its

default configuration, the jmx:iiop connector is not

secure. Applications that are concerned with security should therefore

not advertise their jmx:iiop connectors through this template, unless

they have taken the appropriate steps to make it secure.

For further details please refer to JSR 160 specification available at

http://www.jcp.org/en/jsr/detail?id=160

TemplateText:

-------------------------template begins here-----------------------

template-type=jmx:rmi-iiop

template-version=1.0

template-description=

 This template describes the RMI/IIOP Connector defined by JSR 160.

 More information on this connector can be obtained from the

 JSR 160 specification available from the JCP Home Page at:

 http://www.jcp.org/en/jsr/detail?id=160

template-url-syntax=

 url-path = jndi-path / ior-path

 ior-path = "/ior/IOR:" *HEXDIG

 ; CORBA IOR

 jndi-path = "/jndi/" *xchar

 ; name understood by JNDI API, shows were RMI/IIOP stub is stored

 ; The following rules are extracted from RFC 2609

 safe = "$" / "-" / "_" / "." / "~"

 extra = "!" / "*" / "'" / "(" / ")" / "," / "+"

 uchar = unreserved / escaped

 xchar = unreserved / reserved / escaped

 escaped = 1*(`\' HEXDIG HEXDIG)

 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"

 unreserved = ALPHA / DIGIT / safe / extra

Examples of the IOR form:

service:jmx:iiop://myhost:9999/ior/IOR:000000000000003b<350 chars deleted>00
Appendix A Service Templates 91

service:jmx:iiop:///ior/IOR:000000000000003b<350 chars deleted>00

This form contains the CORBA IOR for the remote object representing

the connector server. It is generated by the connector server, and

is not intended to be human-readable.

#

Examples of the JNDI form:

service:jmx:iiop://myhost:9999/jndi/ldap://namehost:389/a=b,c=d

service:jmx:iiop:///jndi/ldap://namehost:389/a=b,c=d

If the client has an appropriate JNDI configuration, it can use

a URL such as this:

service:jmx:iiop:///jndi/a=b,c=d

#

In both the /ior/ and /jndi/ forms, the hostname and port number

(myhost:9999 in the examples) are not used by the client and, if

present, are essentially comments. The connector server address is

actually stored in the IOR (/ior/ form) or in the directory entry

(/jndi/ form).

#

For more information, see the JSR 160 specification, notably the

package javax.management.remote.rmi.

-------------------------template ends here-----------------------

CODE EXAMPLE A-5 Service Template for the service:jmx:iiop Concrete Service Type

-------------------------template begins here-----------------------

template-type=jmx:rmi-iiop
template-version=1.0

template-description=
 This template describes the RMI/IIOP Connector defined by JSR 160.
 More information on this connector can be obtained from the
 JSR 160 specification available from the JCP Home Page at:
 http://www.jcp.org/en/jsr/detail?id=160
template-url-syntax=
 url-path = jndi-path / ior-path
 jndi-path = "/jndi/" *xchar
 ; name understood by JNDI API, shows were RMI/IIOP stub is stored
 ior-path = "/ior/IOR:" *HEXDIG
 ; CORBA IOR
 ; The following rules are extracted from RFC 2609
 safe = "$" / "-" / "_" / "." / "~"
 extra = "!" / "*" / "’" / "(" / ")" / "," / "+"

CODE EXAMPLE A-4
92 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

 uchar = unreserved / escaped
 xchar = unreserved / reserved / escaped
 escaped = 1*(‘” HEXDIG HEXDIG)
 reserved = ";" / "/" / "?" / ":" / "@" / "&" / "=" / "+"
 unreserved = ALPHA / DIGIT / safe / extra

-------------------------template ends here-----------------------

CODE EXAMPLE A-5 Service Template for the service:jmx:iiop Concrete Service Type
Appendix A Service Templates 93

94 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

APPENDIX B

Non-standard environment
parameters

This appendix lists non-standard environment parameters that are understood by
the Reference Implementation of this specification. These attributes are defined in
the jmx.remote.x namespace. As described in Chapter 7 “Summary of
Environment Parameters”, this namespace is reserved for non-standard extensions
to the parameters defined in this specification.

Implementations are not required to support the parameters defined here. However,
implementors are encouraged to use the same name and semantics where applicable.

The format of this table is the same as for the table in TABLE 7-1 on page 82.

Where the type of an attribute is “integer”, the value can be of any subclass of
java.lang.Number, typically Integer or Long. It can also be a string, which is
parsed as a decimal integer.
95

TABLE B-1 Environment Parameters

Name
jmx.remote.x.+ Type

Client/
Server Visible Meaning

access.file String Server No Name of a file containing access levels for simple
RMI and JMXMP connector access control. Uses
Properties file format: property name is user name,
property value is “readonly” or “readwrite”.

password.file String Server No Name of a file containing username and password
entries for RMI authentication. Uses Properties file
format: property name is user name, property value
is password.

notification.
buffer.size

integer Server Yes Minimum size of the buffer that stores notifications
for one or more connector servers. A connector
server will remember a notification if there have not
been this many others since it was sent.

notification.
fetch.max

integer Client N/A Maximum number of notifications that a client (RMI
or JMXMP) will request in a single
fetchNotifications request.

notification.
fetch.timeout

integer Client N/A Timeout in milliseconds that a client (RMI or
JMXMP) will specify in each fetchNotifications
request.

client.
connection.
check.period

integer Client N/A Time in milliseconds between client probes of an
open connection. The client will do a harmless
operation on the connection with this period in order
to detect communication problems on otherwise-idle
connections. The value can be negative or zero to
disable this probing.

server.max.
threads

integer Server Yes Maximum number of server threads for each JMXMP
connection. If more than this many requests arrive
simultaneously, the surplus ones will be blocked
until others complete.

server.min.
threads

integer Server Yes Minimum number of server threads for each JMXMP
connection. The server will keep at least this many
threads alive, even if the current number of requests
is less than this.

request.
waiting.
timeout

integer Client N/A Timeout in milliseconds for the response to each
JMXMP client request. If a response does not arrive
within this time, the connection is assumed to be
broken and is terminated. Specifying too short a
value will cause this to happen for requests whose
treatment happens to be slow. Default value is
infinite.
96 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

References

J
JAAS

Sun Microsystems, Java Authentication and Authorization Service (JAAS), http
//java.sun.com/products/jaas/

Jini
Sun Microsystems, Jini Network Technology, ,http

//wwws.sun.com/software/jini/
JNDI ,

Sun Microsystems, Java Naming and Directory Interface,http
//java.sun.com/products/jndi/

JNDI - Java Objects
JNDI Tutorial, Java Objects and the Directory, http

//java.sun.com/products/jndi/tutorial/objects/index.html
JNDI - Java Schema

JNDI Tutorial, Java Schema for the Directory,http
//java.sun.com/products/jndi/tutorial/config/LDAP/java.schema

JNDI - LDAP Servers Discovery
JNDI Tutorial, Automatic Discovery of LDAP Servers, ,http

//java.sun.com/products/jndi/tutorial/ldap/connect/create.html#AUTO
JNDI - Multi URL

JNDI Tutorial, How to specify more than one URL when creating initial context., ,http
//java.sun.com/products/jndi/tutorial/ldap/misc/src/MultiUrls.java

JSR 140
Nick Briers, et al, Service Location Protocol (SLP) API for Java, 2001,http

//www.jcp.org/en/jsr/detail?id=140
JSR28

Lee, Rosanna, et al, Java SASL Specification, http
//jcp.org/en/jsr/detail?id=28

JSR3
JSR3 Sun Microsystems et al, Java Management Extensions Specification, version 1.2, 2002 http
References 97

//jcp.org/en/jsr/detail?id=3
JSSE

Sun Microsystems, Java Secure Socket Extension (JSSE), ,http
//java.sun.com/products/jsse/

L
LDAP Thread in the JNDI Tutorial

Tips for LDAP Users, http
//java.sun.com/products/jndi/tutorial/ldap/index.html

R
RFC , , ,
RFC 2608

E. Guttman, et al, Service Location Protocol, Version 2, 1999,http
//www.ietf.org/rfc/rfc2608.txt

RFC 2609
E. Guttman, C. Perkins, J. Kempf, 1999,http

//www.ietf.org/rfc/rfc2609.txt
RFC 2614

J. Kempf, E. Guttman., An API for Service Location, 1999,http
//www.ietf.org/rfc/rfc2614.txt

RFC 2713
V. Ryan, et al., Schema for Representing Java Objects in an LDAP Directory, 1999,http

//www.ietf.org/rfc/rfc2713.txt
RFC2222

Myers, J, Simple Authentication and Security Layer (SASL), 1997,ftp
//ftp.rfc-editor.org/in-notes/rfc2222.txt

RMI/SSL
Sun Microsystems, Using RMI with SSL, 2001

S
Serial

Sun Microsystems, Inc, Java Object Serialization Specification
SLP

IETF SVRLOC working group, Service Location Protocol, http
//www.srvloc.org/

SLP White Paper
C. Perkins, http

//playground.sun.com/srvloc/slp_white_paper.html
98 Java Management Extensions Remote API 1.0 Specification Final Release • October 2003

	JavaTM Management Extensions (JMXTM) Remote API 1.0 Specification
	Contents
	Introduction
	1.1 Purpose of This Standard
	1.2 Required Version of the JMX Specification
	1.3 History

	Connectors
	2.1 Sessions and Connections
	2.2 Connection Establishment
	2.3 MBean Server Operations Through a Connection
	2.4 Adding Remote Listeners
	2.4.1 Filters and Handbacks
	2.4.2 Removing Listeners
	2.4.3 Notification Buffer
	2.4.4 Getting Notifications From the Notification Buffer

	2.5 Concurrency
	2.6 Normal Termination
	2.7 Abnormal Termination
	2.7.1 Detecting Abnormal Termination

	2.8 Connector Server Addresses
	2.9 Creating a Connector Client
	2.9.1 JMXConnectorFactory
	2.9.2 Connection Stubs
	2.9.3 Finding a Server

	2.10 Creating a Connector Server
	2.10.1 Publishing a Server

	2.11 Class Loading
	2.11.1 Class Loading on the Client End
	2.11.2 Class Loading on the Server End

	2.12 Connector Server Security
	2.12.1 Subject Delegation

	RMI Connector
	3.1 RMI Transports
	3.2 Mechanics of the RMI Connector
	3.2.1 Wrapping the RMI Objects
	3.2.2 RMIConnection
	3.2.3 Notifications

	3.3 How to Connect to an RMI Connector Server
	3.4 Basic Security With the RMI Connector
	3.4.1 How Security Affects the RMI Connector Protocol
	3.4.2 Achieving Real Security

	3.5 Protocol Versioning

	Generic Connector
	4.1 Pluggable Transport Protocol
	4.2 Pluggable Object Wrapping
	4.3 Generic Connector Protocol
	4.3.1 Handshake and Profile Message Exchanges
	4.3.2 MBean Server Operation and Connection Message Exchanges
	4.3.3 Security Features in the JMXMP Connector
	4.3.3.1 TLS Profile
	4.3.3.2 SASL Profile

	4.3.4 Protocol Violations
	4.3.5 Protocol Versioning
	4.3.6 Properties Controlling Client and Server
	4.3.6.1 Global Properties of the Generic Connector
	4.3.6.2 TLS Properties
	4.3.6.3 SASL Properties

	Defining a New Transport
	Bindings to Lookup Services
	6.1 Terminology
	6.2 General Principles
	6.2.1 JMXServiceURL Versus JMXConnector Stubs
	6.2.2 Lookup Attributes

	6.3 Using the Service Location Protocol
	6.3.1 SLP Implementation
	6.3.2 SLP Service URL
	6.3.3 SLP Lookup Attributes
	6.3.4 Code Templates
	6.3.4.1 Discovering the SLP Service
	6.3.4.2 Registering a JMX Service URL With SLP
	6.3.4.3 Looking up a JMX Service URL With SLP

	6.4 Using the Jini Network Technology
	6.4.1 Jini Networking Technology Implementation
	6.4.2 Service Registration
	6.4.3 Using JMX Remote API Connector Stubs
	6.4.4 Jini Lookup Service Attributes
	6.4.5 Code Templates
	6.4.5.1 Discovering the Jini Lookup Service
	6.4.5.2 Registering a JMX Remote API Connector Stub With the Jini Lookup Service
	6.4.5.3 Looking up a JMX Connector Stub From the Jini Lookup Service

	6.5 Using the Java Naming and Directory Interface (LDAP Backend)
	6.5.1 LDAP Schema for Registration of JMX Connectors
	6.5.2 Mapping to Java Objects
	6.5.3 Structure of the JMX Remote API Registration Tree
	6.5.4 Leasing
	6.5.5 Code Templates
	6.5.5.1 Discovering the LDAP Server
	6.5.5.2 Registering a JMXServiceURL in the LDAP server
	6.5.5.3 Looking up a JMX Service URL From the LDAP Server

	6.6 Registration With Standards Bodies

	Summary of Environment Parameters
	Service Templates
	Non-standard environment parameters
	References

