Do you wish you could hear the audio and read
the transcription of this session?

Then come to JavaOne® Online where this session is available
in a multimedia tool with full audio and transcription synced with
the slide presentation.

JavaOne Online offers much more than just multimedia sessions.
Here are just a few benefits:

- 2003 and 2002 Multimedia JavaOne conference sessions
- Monthly webinars with industry luminaries

- Exclusive web-only multimedia sessions on Java technology
- Birds-of-a-Feather sessions online

- Classified Ads: Find a new job, view upcoming events, buy or
sell cool stuff and much more!

- Feature articles on industry leaders, Q&A with speakers, etc.

For only $99.95, you can become a member of JavaOne Online
for one year. Join today!

Visit http://java.sun.com/javaone/online for more details!

l

JavaOne JNelellaleRel =N lels
to the Java™

Programming
Language

Gilad Bracha
Computational Theologist
Sun Microsystems

Goals of This Talk

Familiarize you with the proposed generics
extension as It affects working

programmers
* Basic features and usage

* Migration of pre-existing code
e Current status

Speaker’s Qualifications

e Gilad Bracha is:

Computational Theologist at Sun
Microsystems

Co-author and maintainer of the Java™
Language Specification

Specification lead for JSR-14, “Adding
Generics to the Java™ Programming
Language”™

Well-known researcher in the field of
object-oriented programming languages

What Are Generics?

* Generics abstract over Types

* Classes, Interfaces and Methods can
be Parameterized by Types

* Generics provide increased readability
and type safety

Example

| nterface List<E> {
voi d add(E x);
|terator<E> iterator();

}

I nterface lterator<e> {
E next();
bool ean hasNext () ;

What Generics Are Not

Generics are not templates

Unlike C++, generic declarations are
typechecked

Generics are compiled once and for all
Generic source code not exposed to user
No bloat required

How to Use Generics

Li st <I nt eger> xs = new Li nkedLi st <l nteger>();

xs. add(new I nteger(0));
| nteger x = xs.iterator.next();

Compare with:

Li st xs = new LinkedLi st ();
xs. add(new I nteger(0));

| nteger x = (Integer)xs.iterator. next();

List Usage: Without Generics

Li st ys = new LinkedList();

ys. add("zero");

Li st yss;

yss = new Li nkedList();

yss. add(ys);

Stringy = (String)
((List)yss.iterator().next()).iterator().next();
nteger z = (Integer)ys.iterator().next();

[run-tinme error

I
/

List Usage: With Generics

Li st<String> ys = new LinkedList<String>();
ys. add("zero");
Li st <Li st<String>> yss;
ysSs = new Li nkedLi st<List<String>>();
yss. add(ys);
String y =
ySS. |terator() next().iterator().next();
| nt eger z ys.iterator().next();
/] conplle time error

List Implementation Without

Generics

cl ass LinkedLi st inplenments List {
protected class Node {
hj ect elt;
Node next;
\ Node(Chj ect elt){elt = e; next = null;}

protected Node h, t;
public LinkedList() {h = new Node(null); t = h;}
public void add(Ooject elt){

t. next = new Node(elt);

t = 1.next;

}

List Implementation Without

Generics

public Iterator iterator(){
return new lterator(){

protected Node p = h. next;
publ i ¢ bool ean hasNext(){return p !'= null;}
public Ooject next(){
hject e = p.elt;
P = p.next;
return e;

333

List Implementation With Generics

cl ass Li nkedLi st<E> inpl enents List<E>
protected class Node {
E elt;
Node next;
Node(E elt){elt = e; next = null;}

prot ect ed Node h, t;

public LlnkedLlst {h

public void add(E elt?
t.next = neM/hbde(e
t = 1.next;

}

= new Node(null); t = h;}
t);

List Implementation With Generics

public lIterator<E> iterator(){
return nem1|terator<E>(L{
prot ect ed Node next ;

publ i ¢ bool ean hashbxt(){return p!'=null;
public E next(){

Ee=p.elt;

p = p.next;

return e;}}}}

Generic Methods

class Coll ections { _
public static <S, T extends S> void

copy(List<S> dest, List<T> src){...}
class Col |l ection<E> {

public <T> bool ean
contai nsAll (Collection<T> c¢) {...}

public <T extends E> bool ean
addAl | (Col l ection<T> c¢) {...}

Experimental: Wildcards

class Collections {
public static <S> void
copy(List<S> dest,
Li st<? extends S> src){...}

class Col | ection<E> {

publ i ¢ bool ean
containsAll (Collection<?> c¢) {...}

publ i ¢ bool ean
\ addAl | (Col | ection<? extends E>c) {...}

How Do Generics Affect My Code?

* Once in a million lines (literally), you might
notice a difference

* |f you think that is too much—use source 1.4,
which is totally compatible

* Painless migration—You can make your code
API generic without waiting for anyone else

Migration

Distinguish among several levels of
compatibility:

* Language compatibility
- All programs in existing language remain valid

* Platform compatibility

- All programs that run on existing platform run
on new platform

* Migration compatibility
- EXisting source code can be migrated to utilize
new features

Why Language Compatibility

Is Inadequate

e All it guarantees is that old programs mean
the same thing as they used to

* Real programs use platform libraries

* |f platform libraries have changed, guarantee
IS useless in practice

* In itself, language compatibility is a theoretical
notion, but...

- It is a prerequisite for more useful forms
of compatibility

Why Language Compatibility

Is Inadequate

All programs continue to work, but the
guarantees are weak. One way to support
platform compatibility is to ship both old
and new libraries.

* Duplication/bloat
* Migration may be tough

Platform Compatibility

and Migration

package com vendor 1,

cl ass I nventory({

public static void addAssenbl y(String nane,
Col l ection parts) {

(bj ect 0 = parts;
(Col | ection) o;

}
public static Assenbly get Assenbly(String nane) {...}

}
cl ass Assenbly {
public Collection getParts(){...}

Platform Compatibility

and Migration

package com vendor 2;

| nport com vendor 1. *;

Coll ection ¢ = new Col |l ection();
c.add(...)
| nvent ory. addAssenbl y("t hi ngee", c);
Collection k =
| nvent ory. get Assenbl y("t hi ngee").getd ass();
hj ect ok = k;
k = (Col l ection) ok;

Platform Compatibility

and Migration

package com vendor 1,

cl ass I nventory({

public static void addAssenbl y(String nane,
Col | ection<Part> parts) {

(bj ect 0 = parts;
(Col | ection<Part>) o;

}
public static Assenbly get Assenbly(String nane) {...}

}
cl ass Assenbly {

public Collection<Part> getParts(){...}

Platform Compatibility

and Migration

package com vendor 2;

| nport com vendor 1. *;

Col l ection ¢ = new Collection();
c.add(...)
| nvent ory. addAssenbl y("t hi ngee", c); // error
Collection k =
| nvent ory. get Assenbl y("t hi ngee"). get C ass();
[l error
(bj ect ok = k;
k = (Col | ection) ok;

Why Platform Compatibility

Is Inadequate

* Any vendor who wants to migrate to generics
would be forced to duplicate their library

e Cannot even do this unless all libraries |
depend on have migrated

* At best delays, duplication, maintenance
headaches

* Cyclic dependencies force everyone to
coordinate migration

Migration Compatibility

* No duplication required

* No coordination required

* Everyone migrates when they want to
* This constrains the design a great deal

Raw Types

Allow new, generic definitions to be used
by old, non-generic code

| nterface List<E> { . }

| nterface Iterator<E>{

cl ass Li nkedLi st <E> |nplenents List<E> {...}
/[l Al definitions fully generic, as before
/'l usage can still be non-generic

Li st xs = new LinkedLi st ();

xs. add(new I nteger(0));

| nteger x = (Integer) xs.iterator().next();

Unchecked Warnings

public String | oophol e(lnteger Xx)
Li st<String> ys = new Li nkedLi st<String>;
Li st Xxs = ys;
xs.add(x); // conpile-tine unchecked warni ng
return ys.iterator().next();

}

Unchecked Warnings

public String | oophol e(lInteger x) {
Li st ys = new LI nkedLi st;
Li st Xxs = ys;
xs. add(x) ;
return (String) ys.iterator().next();
[l run-tinme error

}

Migration Compatibility

and Reification

bject o = ...
(Col | ection<String>) o;

How can the run time system check this?
Requires type parameters to be reified
However, reification and migration conflict!

Migration Compatibility

and Reification

package com vendor 2;

i nport com vendor 1. *;

Col l ection ¢ = new Collection();
c.add(...)
| nvent ory. addAssenbl y("t hi ngee", c);
Collection k =
| nvent ory. get Assenbl y("t hi ngee").getd ass();
hj ect ok = k;
k = (Col l ection) ok;

/] choose between fail ure and unsoundness

Migration Compatibility

and Reification

package com vendor 1,

cl ass I nventory({

public static void addAssenbl y(String nane,
Col | ection<Part> parts) {

(bj ect 0 = parts;
(Collection<Part>) o; // fails with reification

}
public static Assenbly get Assenbly(String nane) {...}

}
cl ass Assenbly {

public Collection<Part> getParts()

Migration Compatibility

and Reification

* Huge language design space with many
variations on several orthogonal design
decisions

e Have not found a combination that is
sound, compatible and reified

* Not much point to reification without
dynamic soundness

When Can | Start Using Generics?

* Will ship in Tiger
* Early adopters can start now!

* Prototype implementation available

* Provides drop-in compatibility with
JDK"™ software

How Can | Start Using Generics?

* Download prototype implementation from:
http://java.sun.com/people/gbracha/generics-update.html

* Use the compiler as a drop in replacement
for | avac

Summary of Generics

in Java Technology

* A good way to catch type errors up front

* Make your code more readable

* None of the C++ template drawbacks

* Easy migration path, at your own pace
 Compatible with current Java™ technology

* “Early access” avallable now; should ship with
JDK™ software in Tiger

Credits

* EXxpert group membership:
- Gilad Bracha, Sun Microsystems (chair)
- Norman Cohen, IBM
- Christian Kemper, Borland
- Martin Odersky, EPFL
- Kresten Thorup, Trifork
- Philip Wadler, Avaya Labs

More Credits

* The javac compiler team, past and present
- David Stoutamire
- Neal Gafter
- Iris Garcia
- Bill Maddox

More Credits

Researchers from Denmark, Italy and Japan

* Mads Torgersen

* Erik Ernst

* Peter Von der Ahe

* Christian Plesner Hansen
* Mirko Viroli

e Atsushi Igarashi

Useful URLS

nttp://java.sun.com/docs/books/|ls

nttp://java.sun.com/docs/books/vmspec

nttp://java.sun.com/people/gbracha
gilad.bracha@sun.com
Jsr-14-comments@jcp.org
Jsr-14-prototype-comments@Sun.com

JavaOne

Sun's 2003 Worldwide Java Developer Conference’

java.sun.com/javaone/sf

