CNS 4450 – Analysis of Programming Languages
Homework Assignments – Fall 2008
Chapter 4 – 2 (all), 4 (a,b), 5 (a,b), 9

Chapter 5 – 3, 4, 5, 7, 9, 10, 11, 14, 15

Chapter 6 – 1, 2, 4 (note: part g should read “X := X + Y”), plus extra problem below.

Chapter 7 – 3, 4, 5, 8, 9, 10, 11 (hints below)

Chapter 8 – 1, 3, 5 (all)

Chapter 9 – 3, 5-7, 10, 11, 18-20, 24, 25, 27

Chapter 10 – 2, 3, 5 (typo: “example from Exercise 5” should be “example from Exercise 3”), 6

Chapter 12 – 1, 2, 3, 7, 8
Chapter 16 - 3 (There are 25 combinations – 5 are trivial)

Chapter 18 – 3, 6

Chapter 21 - Problem below on array offsets

Python Homework – TBD

D Homework – TBD
Extra Problem for Chapter 6 –

Write a C++ program that reads a 64-bit machine instruction and extracts the values for its components from certain bits, specified as follows:

Bits 0-4
code (the instruction code)

Bits 5-8
ladrm (left address mode)

Bits 9-12
radrm (right address mode)

Bits 13-19
si (short immediate)

Bits 20-25
lreg (left register)

Bits 26-31
rreg (right register)

Bits 32-63
li (long immediate)

You will be given a string of 16 hexadecimal digits, such as 08800080000004D2, which represents the numeric value of the 64 bits to be analyzed. The output for this input string should be:

Instruction: 08800080000004D2

rreg = 0

lreg = 2

si = 0

radrm = 0

ladrm = 1

code = 1

li = 1234
To get full credit for this program, you’ll need to use a union and a bit-field structure. Any C book and most C++ books talk about these language features. Use no bitwise operators. If you’re using an Intel machine, remember that it is a little-endian machine, which means you’ll have to reverse the order of the bit layout to extract the correct values. Use the following input to test your program:

08800080000004D2

E05000000000008E

1140408300000000

5008000300000000

E800000000000020

The output should be:

Instruction: 08800080000004D2

rreg = 0

lreg = 2

si = 0

radrm = 0

ladrm = 1

code = 1

li = 1234

Instruction: E05000000000008E

rreg = 0

lreg = 0

si = 0

radrm = 10

ladrm = 0

code = 28

li = 142

Instruction: 1140408300000000

rreg = 3

lreg = 2

si = 4

radrm = 8

ladrm = 2

code = 2

li = 0

Instruction: 5008000300000000

rreg = 3

lreg = 0

si = 0

radrm = 1

ladrm = 0

code = 10

li = 0

Instruction: E800000000000020

rreg = 0

lreg = 0

si = 0

radrm = 0

ladrm = 0

code = 29

li = 32

Hint for Chapter 7, Problem 5

Any polynomial can be rewritten by factoring x out of each term as follows:

[image: image1.wmf])))

0

3

(

7

(

5

(

3

3

5

7

3

2

3

×

+

+

-

+

+

-

=

-

+

-

x

x

x

x

x

x

x

Notice that the coefficients are reversed. So the recursive pattern for eval is: first coefficient + x*(eval on the rest).

Hint for Chapter 7, Problem 11
It is important to notice that a powerset of n+1 elements is the result of pairing the new (n+1)th element with every element of the powerset of n elements. For example, consider the set {1,2}. Its powerset is {φ, {1}, {2}, {1,2}}. Now consider the powerset of {1,2,3}. It contains the four elements of the previous powerset, plus the sets formed by adding the element 3 to those four elements: {φ, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}}. So the four new elements are:

φ ∪ {3} = {3}

{1} ∪ {3} = {1,3}

{2} ∪ {3} = {2,3}

{1,2} ∪ {3} = {1,2,3}

Therefore, it is handy to have a function that combines a new element with every other subset of the previous powerset. This can be used with your powerset function and recursion to easily solve the problem. powerset merely concatenates the combination of the new element and the previous sets (e.g., {3}, {1,3}, {2,3}, {1,2,3}) with the previously formed powerset ({φ, {1}, {2}, {1,2}}) recursively. Ya gotta love recursion!
Problem for Chapter 21

Arrays that are statically allocated, such as in FORTRAN, C, and C++, are laid out in memory in one of two configurations: row major and column major. C++ uses row major order, where the last index cycles through its values before the index to its left is incremented, like an odometer. Column major order does the opposite: the left-most array index cycles through its range before the index to its right is incremented, like a reverse odometer (FORTRAN uses column major order.) It is called column major order because elements of a 2-dimensional array are stored by columns. So if an array, a, is declared as follows

int a[m][n];
then the element offset for accessing a[i][j] from the beginning of the array is

i*n + j

for row-major order, and

i + j*m

for column-major order.

Generalizing this procedure to higher-dimensioned arrays requires a moment’s thought. For example, suppose you have a 3-dimensional array declared as

int a[m][n][p];
where the constants m, n, and p have the respective values 2, 3, and 4.
Then a row-major ordering lays out elements sequentially according to the following straightforward indexing:

0,0,0
(meaning, element a[0][0][0] comes first, then element a[0][0][1], …)

0,0,1

0,0,2

0,0,3

0,1,0

0,1,1

0,1,2

0,1,3

0,2,0

0,2,1

0,2,2

0,2,3

1,0,0

1,0,1

1,0,2

1,0,3

1,1,0

1,1,1

1,1,2

1,1,3

1,2,0

1,2,1

1,2,2

1,2,3

Now suppose you were to traverse this array in memory order with three nested loops using index variables i, j, and k:

for (int i = 0; i < m; ++i)

 for (int j = 0; j < n; ++j

 for (int k = 0 k < p; ++k)

 /// access a[i][j][k]

You can see that the index, k, for the third dimension (p = 4) goes through its 4 values before j is incremented; therefore j changes every 4 slots in memory. Likewise, i changes for every three changes in j, but those each require 4 slots for k as before, so i changes every 4*3 = 12 slots. The formula for the element offset in memory relative to the beginning of the array a is therefore:
Slot offset of element a[i][j][k] = i*n*p + j*p + k

For column major order, you just do everything backwards index-wise, as the following index mapping illustrates:
0,0,0

1,0,0

0,1,0

1,1,0

0,2,0

1,2,0

0,0,1

1,0,1

0,1,1

1,1,1

0,2,1

1,2,1

0,0,2

1,0,2

0,1,2

1,1,2

0,2,2

1,2,2

0,0,3

1,0,3

0,1,3

1,1,3

0,2,3

1,2,3

Problems:

· What is the formula for the column-major case of 3 dimensions?
· Give the row and column major offset formulas to locate the element a[i][j][k][h] for a four dimensional array:

int a[m][n][p][q];

· Give the formulas for the general case of n dimensions.

Show some work! Don’t just write the answer if you want full credit.
� EMBED Equation.3 ���

[image: image2.wmf])))

0

3

(

7

(

5

(

3

3

5

7

3

2

3

×

+

+

-

+

+

-

=

-

+

-

x

x

x

x

x

x

x

_1252304114.unknown

