CNS 3320
Program 3
“Roots Of Equations”

Date Due: See Syllabus
Write a function, zero(double a, double b, double f()) that takes an interval [a,b] containing a sign change in f(). As discussed in class, we will use a hybrid method based on False Position, which combines the safety of Bisection and the speed of the Secant method.

First, find the point c, where the secant between (a,f(a)) and (b,f(b)) crosses the x-axis. If sign(f(a)) == sign(f(c)), then find the point d where the secant between (a, f(a)) and (c, f(c)) crosses the x-axis. If, however, sign(f(a)) ≠ sign(f(c)), then use the line between (b, f(b)) and (c, f(c)) to find d. It is possible that d can fall outside of [a,b]; if so, resort to bisection. Otherwise, the new candidate interval is either [c, d] or [d, c] (depending on where they fall). If the length of [c,d] (or [d,c]) is not less than half of [a,b], then do a bisection step before continuing your false position loop. You exit whenever you stumble across a zero or the bisection step refines the interval to 1 ulp. You should check every function evaluation to see if it lands on a zero. Whenever you exit, you can just return c. As you exit, print the number of function evaluations that were used in finding the root. Design your algorithm so as to minimize the number of function evaluations performed.
Note: whenever you resort to bisection, always use the smallest current interval, according to the work you’ve already done (e.g., use c in place of a or b, as appropriate). Also, never evaluate the given function more than once for the same value of x.

After you get this working, try the following small but crucial enhancement mentioned in class:

1. If, after first computing c, you find that it lands on a (or to the left of a, for portability across FP systems), replace c with the floating-point number within 1-2 ulps to the right of a (i.e., a + ε|a|). This allows a chance to find a good d without resorting to bisection unnecessarily.

2. Conversely, if instead you find instead that c lands on b (or to the right of b), replace c with the floating-point number 1-2 ulps to the left of b (i.e., b – ε|b|).

3. After applying step 1 or 2 above, go on to test to see if c <= a or c >= b, which will send you to bisection. (That may not sound like it makes sense, but this catches the case where ulps(a, b) = 1).

Test your function on
[image: image1.wmf]()cossin

fxxxx

=+

 (find the two smallest positive roots), and also on
[image: image2.wmf]()

x

fxex

-

=-

 (there is only one root). For output, print the root (r), the number of function evaluations used, and the value of the function at the computed root (i.e.,
[image: image3.wmf]()

fr

).
_1202727104.unknown

_1202727232.unknown

_1202724105.unknown

