Procedure for Converting a PDA to a CFG

First modify the PDA as follows:

1. Only one character must be popped from the stack at a time. (All of the PDAs we’ve seen do this). It may be necessary to add extra states to make this happen.

2. Create the functional form grammar by examining the PDA and creating transitions of the following form:

((q,u,A),(r,B))

where

q is the start state

u is the consumed character

A is the popped character

r is the end state

B is(are) the pushed character(s)

3. For every transition that does not inspect the stack (i.e., the pop character is “e”), add one transition that pops a single character and pushes it back again, for each letter in the stack alphabet. For example, if the stack alphabet is {X, Y}, and you have the transition

((q,u,e),(r,X))

then you add the transitions

((q,u,X),(r,XX))
(q,u,Y)(r,XY))

thus leaving the new X on the top of the stack.

a) The conversion process proceeds as follows:

b) Add a rule S → <sef> for the start state, s, and each final state, f.

For example:

S → <sef1>

S → <sef2>

c) Add a rule <qeq> → e for each state q.

For example:

<q1eq1> → e

<q2eq2> → e

d) For each transition, in the PDA, that pushes a single character (including “e”), such as

((q,u,A),(r,B))

add rules of the form

<qAp> → u<rBp>

for each state p in the machine. The letter u can be lambda (“e”, in which case it disappears).

e) For each state in the PDA that pushes two (non-null) characters, such as

((q,u,A),(r,BC))

add rules of the form

<qAp> → u<rBt><tCp>

for all possible combinations of states p and t in the machine. (This pattern extends to arbitrary length strings pushed onto the stack <qAp> → u<rBt><tCn>...<nDp>).

For example, for a stack alphabet of {X Y}:

<qAX> → u<rBX><XCX>

<qAX> → u<rBY><YCX>

<qAY> → u<rBX><XCY>

<qAY> → u<rBY><YCY>

Don’t bother with non-terminals <qAr> where it is not possible in the PDA to go from state q to state r (erase any rules where a path of any number of transitions does not exist to get from state q to state r). Simplify the grammar to taste (rename non-terminals for each “<qnAnrn>”, combine transitions with the same start term separating destination terms with “|”, eliminate unit productions, dead-ends and jails) and you’re (much easier said than) done!

Example

Recall the PDA for the language of balanced parentheses:

[image: image1.emf]- + S

l,e/R

r,R/e

Here we are using Σ = {l r}—for “left” and “right”—and Γ = {R}. In functional form, this PDA is:

{(s,l,e),(s,R)),

(rule 1)

 (s,r,R),(s,e)}

(rule 2)

First, we need to add the following rule to accompany rule 1, above, to make the machine “simple”. Note that we still keep rule 1, we just add the following new rule to the machine:

((s,l,R),(s,RR))
(rule 3)

Now we can construct the grammar. First the boilerplate rules (types 1 and 2):

S → <ses>

<ses> → e

Now from rule 1 above we get the type 3 rule

<ses> → l<sRs>

and for rule 2 we get

<sRs> → r<ses>

For rule 3 we have

<sRs> → l<sRs><sRs>

Notice how things are simpler than normal when you have only one state—you don’t have to consider combinations of states in the generated rules.

Renaming <ses> = S (and collapsing the unit production S → <ses>), and <sRs> = B, the grammar becomes:

S → lB | e

B → rS | lBB

As a sanity check, we can generate “lrllrlrr” as follows:

S => lB => lrS => lrlB => lrllBB => lrllrSB => lrllrlBB => lrllrlrSB => lrllrlrB => lrllrlrrS

 => lrllrlrr

_167501588.vsd
- + S

l,e/R

r,R/e

