
Machine Computation of the Sine Function

Chuck Allison
CNS 3320 – Numerical Software Engineering

Utah Valley State College

February 2007

Abstract

This note shows how to determine the number of terms to use for the McLaurin series for
sinx to obtain maximum machine accuracy. It also shows some tweaks that lessen roundoff and
increase efficiency.

Argument Reduction

Transcendental functions such as sinx are calculated by a truncated Taylors series. In the case of
trigonometric functions, it is important to leverage their periodicity and reduce arguments to the
smallest possible range, since power series tend to behave less effectively for points distant from their
center of convergence. It is easy to reduce sinx to ± sin t where −π

2 ≤ t ≤ π
2 . If t = x − nπ, then

we seek an n that minimizes |t|. But such an n will also minimize the expression
∣∣x−nπ

π

∣∣ =
∣∣x
π − n

∣∣.
The value of n that will minimize this expression is the integer that is closest to x

π , so n can be
calculated by rounding x

π to the nearest integer. sinx will then be the same as sin t if n is even, or
− sin t if n is odd. To prove that −π

2 ≤ t ≤ π
2 , note that since n is the nearest integer to x

π , then
n = x

π + δ, where |δ| ≤ 1
2 . We then see that

|t| = |x− nπ| = |x− (
x

π
+ δ)π| = |δ|π ≤ 1

2
π

Now that we know that we may assume −π
2 ≤ t ≤

π
2 , we can use the error formula for Taylor Series

to determine the numbers of terms of the Taylor polynomial will give us the accuracy we desire for
sin t.

Estimating Truncation Error

The Taylor error formula is

|Rn| =
∣∣∣∣∣f (n+1)(ξ)

xn+1

(n+ 1)!

∣∣∣∣∣ , 0 ≤ ξ ≤ x
Since our function sinx and all its derivatives are no more than 1 in magnitude, we can say that

|Rn| ≤
∣∣∣∣∣ xn+1

(n+ 1)!

∣∣∣∣∣ =
∣∣∣∣ xn

(n+ 1)!

∣∣∣∣ |x|
1

Why |x| was factored out will be made evident in the next paragraph.
Note that we want the truncation error, |Rn|, to be less than half the floating-point spacing near

sin t, so that adding Rn to the running Taylor polynomial will make no difference whatsoever—
that means we will have obtained all the accuracy we possibly can. Recall that the spacing near a
number, z, is either ε

B z or εz, where ε is machine epsilon and B is the floating-point base (2 in our
case). We will be conservative in our expectations and use the larger of the two values and require
that Rn < 1

2ε| sin t|. Inspecting the quantity
∣∣ t
sin t

∣∣ in our interval of interest (graph it if you need
to), we see that it is bounded above by π

2 , which gives |t| ≤ π
2 | sin t|. Using this fact we obtain

|Rn| ≤
∣∣∣∣ tn

(n+ 1)!

∣∣∣∣ |t| ≤ ∣∣∣∣ tn

(n+ 1)!

∣∣∣∣ π2 | sin t| ≤ (π2)n

(n+ 1)!
π

2
| sin t| =

(π2)n+1

(n+ 1)!
| sin t|

So we want the final term on the right to be less than half the spacing near sin t:

(π2)n+1

(n+ 1)!
| sin t| < 1

2
ε| sin t|

which finally gives us (
π

2

)n+1

<
ε

2
(n+ 1)!

The following program computes n for both single and double precision.

// findn.cpp: Finds the stopping term in the Taylor’s series
// sufficient to maximize the precision of computing sin x.
// It computes both sides of (pi/2)^(n+1) vs. eps/2*(n+1)!
// and stops when the left is less than the right.

#include <cassert>
#include <cmath>
#include <iostream>
#include <limits>
using namespace std;

template<typename FType>
void findn() {

cout << typeid(FType).name() << " => ";
FType pi2 = FType(3.14159265358979323846) / 2;
FType eps2 = numeric_limits<FType>::epsilon()/2;
FType lhs = pi2; // pi2^1
FType rhs = eps2; // eps2 * 1!
int n = 0;
while (lhs >= rhs) {

lhs *= pi2;
rhs *= ++n + 1;

}
cout << "n: " << n << ", lhs: " << lhs << ", rhs: " << rhs << endl;

}

2

int main(int argc, char* argv[]) {
findn<float>();
findn<double>();

}

/* Output:
float => n: 12, lhs: 354.453, rhs: 371.159
double => n: 21, lhs: 20636.6, rhs: 124789
*/

Since the even-index terms of the Taylor series for sinx are zero, the version for float only needs
to go through term 11, which is −x11

11! . Likewise, the double version goes through x21

21! . Here is a
program that implements the single-precision version and compares to the standard library results.

// fsin.cpp: Calculates sin(x) as a float. x is
// reduced to the interval [-pi/2, pi/2]. Uses
// the first 6 non-zero terms of the Taylor’s Series
// (more would add nothing). Improvements still need
// to be made, however!
#include <iostream>
#include "../ieee.h" // Defines a sign() function
using namespace std;

double pi = 3.14159265358979323846; const int k = 5;

float mysine(float x) {
int n = int(x/pi + 0.5*sign(x)); // Uses double precision here
x -= n*pi;
float num = x;
float den = 1.0f;
float sum = x;
int fact = 1; // The denominator contains fact!

for (int i = 0; i < k; ++i) {
num = -num*x*x;
den *= ++fact;
den *= ++fact;
sum += num/den;

}
return (n%2) ? -sum : sum;

}

int main() {
cout << mysine(0.0f) << " (" << sin(0.0f) << ")\n";
cout << mysine(pi/2.0f) << " (" << sin(pi/2.0f) << ")\n";
cout << mysine(pi) << " (" << sin(pi) << ")\n";

3

cout << mysine(3.0f*pi/2.0f) << " (" << sin(3.0f*pi/2.0f) << ")\n";
cout << mysine(22.0f) << " (" << sin(22.0f) << ")\n";
cout << mysine(5.0e8f) << " (" << sin(5.0e8f) << ")\n";

}

/* Output:
0 (0)
1 (1)
-8.74228e-008 (1.22461e-016)
-1 (-1)
-0.00885131 (-0.00885131)
-0.284704 (-0.284704)
*/

This version appears to be roughly equivalent to the standard library version. The output for
double precision is:

0 (0)
1 (1)
0 (1.2246063538224e-016)
-1 (-1)
-0.0088513092904047
(-0.0088513092904039)
-0.28470409192472 (-0.28470407323816)

Improving Accuracy and Efficiency

There are a number of improvements we can make, some which are peculiar to sinx and some
which are generally applicable.

“One-and-a-half” Precision

It is possible to get even more precision from a constant like π without resorting to higher-precision
arithmetic. This technique is useful because you may not have a higher precision available. The
idea is to split π into two parts, π1 and π2, which add to π. The special property of these two
auxiliary constants is that they occupy overlapping decimal positions, so that one of constants
contains decimals at a further decimal position than is normal obtained. Here are two possible
values:

π1 = 3.1416015625, π2 = −8.908910206761537356617e− 6

Note how π2 holds a full contingent of digits for a double, but the exponent makes their digits several
decimal places beyond what is normally stored in a double for π. When calculating t = x − nπ,
we use the auxiliary constants instead:

t = x− nπ = x− n(π1 + π2) = x− nπ1 − nπ2

so we compute t in 2 steps:

4

t = x - n * pi1;
t -= n * pi2

The change in results for single precision shows improvement except for the very large angle (listed
last):

0 (0)
1 (1)
-8.74228e-008 (1.22461e-016)
-1 (-1)
-0.00885131 (-0.00885131)
-0.284704 (-0.284704)

The results for double precision show improvement in each changed result:

0 (0)
1 (1)
1.2246402351403e-016 (1.2246063538224e-016)
-1 (-1)
-0.0088513092904039 (-0.0088513092904039)
-0.28470407323764 (-0.28470407323816)

The effect of this trick is to use more digits (approximately one-and-a-half times) than normal
precision. Since many digits of π are readily available, this is an accessible technique.

Special Handling for Small Angles

It is well known that for small arguments, sinx ≈ x, so for sufficiently small x, it may well be
better to just return x instead of risking underflow or further rounding error. The question is, how
small does x need to be before we can just return x without losing accuracy? To get an answer,
we rewrite the Taylor polynomial as follows:

sinx ≈ x− x3

3!
+
x5

5!
. . .− x19

19!
+
x21

21!
= x(1− 1

6
x2 + ...) = x(1 + r) = x+ xr

When x2 = ε (machine epsilon), then |r| ≈ 1
6ε (because x is very small we can ignore the subsequent

terms). If we call our approximation of sinx by the name s, then s = x+xr. The difference between
s and x is therefore

|s− x| = |xr| ≈ 1
6
ε|x|

Note that this is less than the spacing near x by at least a factor of 3, so we conclude that s and
x are indistinguishable by our floating-point system. We can consequently tune our algorithm to
just return ±x for sinx whenever |x| <

√
ε.

Special Handling for Large Angles

If x is large enough, the integer n = [xπ] will overflow, yielding undefined results. For a 32-bit
platform, this occurs when x

π > 231− 1, or x ≈ 6.7 billion. Probably due to error in representing π

5

coupled with roundoff in the division, experimental results show that 1 billion is a safer threshold,
so for numbers greater than this value, our routine should return a NaN. Some libraries try to
return something for large angles, but you usually can’t trust what you get. For example, for the
number 1030, Microsoft C++ 2005 gives 0.738533997569377, GNU C++ gives -0.838299394218616
and Dinkumware gives 0.990769652599209. Many scientific calculators report a domain error,
although one gave a value of -0.09103119, another -0.863505811, and Windows Calculator gave
-0.090116901912138058030386428952987. The following program using Java’s arbitrary-precision
BigDecimal and BigInteger classes with 40 decimals declares Windows Calculator the “winner.”
(It has a precision of 32 decimal digits.)

import java.math.*;

class BigSine {
public static void main(String[] args) {

BigDecimal t = residue(new BigDecimal("1.0e30"));
System.out.println("t = " + t.toEngineeringString());
System.out.println("sin t = " + Math.sin(t.doubleValue()));

}
static BigDecimal residue(BigDecimal arg) {

// Find nearest integer to arg/pi
String pi1 = "3.14159265358979323846264338327";
String pi2 = "9502884197169399375105820974944";
BigDecimal pi = new BigDecimal(pi1 + pi2);
BigDecimal quotient = arg.divideToIntegralValue(pi);
System.out.println("n = " + quotient);
n = quotient.toBigInteger();
return arg.subtract(quotient.multiply(pi));

}
}

/* Output:
n = 318309886183790671537767526745
t = 0.090239323898053028031181587905554138877362184227620505122720
sin t = 0.09011690191213806
*/

This doesn’t explain what happened to the float version of sinx computed above for x =
5.0e8. The problem there is that in that range, the spacing between floating-point numbers is
greater than 1, so n may be calculated incorrectly even before it is converted to (the wrong!)
integer. The spacing is greater than 1 starting at the interval beginning with 224 ≈ 1.678× 107, so
for single precision it is safer to return a NaN for values greater than 107. Any sine approximations
for arguments above these thresholds (109 for double precision and 107 for single precision) are
likely to be suspect unless arbitrary-length precision is used.

6

Economization of Polynomials

Since the natural behavior of Taylor polynomials is to be less accurate at the endpoints, techniques
exist that more evenly distribute the error throughout the interval [−π

2 ,
π
2]. The theory of these

so-called “minimax” polynomials are based on a technique developed by Chebyshev and are be-
yond the scope of this note. Suffice it to say that transforming a truncated power series by this
technique lessens the errors at the endpoints by decreasing the magnitude of the coefficients of
the higher power terms and adjusting the other coefficients as needed. Another benefit of using
Chebyshev polynomials is that the transformed Taylor polynomial has fewer terms, hence the term
economization of polynomials. (It is also called “telescoping a series”, but this is easily confused
with the other common usage of “telescoping”, where a finite series loses all but its first and last
terms). Cody and Waite [1] show that for a precision of 51 to 60 bits, the following economized
polynomial delivers acceptable, evenly-distributed accuracy:

x+ c1x
3 + c2x

5 + c3x
7 + c4x

9 + c5x
11 + c6x

13 + c7x
15 + c8x

17

where the coefficients, ci, are:

c1 = −0.16666666666666665052
c2 = 0.83333333333331550314× 10−2

c3 = −0.19841269841201840457× 10−3

c4 = 0.27557319210152756119× 10−5

c5 = −0.25052106798274584544× 10−7

c6 = 0.16058936490371589114× 10−9

c7 = −0.76429178068910467734× 10−12

c8 = 0.27204790957888846175× 10−14

The degree of our polynomial has decreased by 4 and the number of coefficients by 2. We are
almost ready to call our algorithm “done.”

Horner’s Rule

Our final tweak minimizes the number of operations required to evaluate our polynomial by rear-
ranging it. Instead of computing powers of x each time, we can use Horner’s Rule, which factors
a polynomial into a sequence of nested operations. For example, suppose we want to evaluate the
polynomial

c3x
3 + c2x

2 + c1x+ c0

If we naively evaluate this by computing powers for each term, this will take 6 multiplications and
3 additions. Rewriting this polynomial as

c0 + x(c1 + x(c2 + x(c3)))

only 3 multiplications are required. In general, Horner’s Rule cuts the number of multiplications
in half. An algorithm for evaluating a polynomial of degree n by Horner’s Rule is described in the
following pseudocode:

sum = c[n]
for i = n-1 downto 0

sum = c[i] + x*sum

7

This algorithm assumes that the ci are available for every power of x, so we would need to include
the 0-valued coefficients for the even powers of x from our truncated sine series. We can avoid these
needless multiplications by 0 if we rewrite our polynomial like the following:

x
(
1 + c1x

2 + c2x
4 + c3x

6 + c4x
8 + c5x

10 + c6x
12 + c7x

14 + c8x
16

)
Substituting y = x2 gives:

x
(
1 + c1y + c2y

2 + c3y
3 + c4y

4 + c5y
5 + c6y

6 + c7y
7 + c8y

8
)

We can now evaluate the inner polynomial by Horner’s Rule on y = x2, and then multiply the
result by x to obtain the final magnitude for sin t.

Summary

To summarize this development, our algorithm for double precision should perform the following
steps:

1. If our argument, x, is ∞ or a NaN, return NaN.

2. If |x| > 109, return a NaN.

3. Reduce x by a factor of nπ to t where −π
2 ≤ t ≤ π

2 (use the two-step procedure with π1 and
π2 explained earlier). Record n.

4. If |t| <
√
ε, return ±t, depending on whether n is even or odd.

5. Compute sin t by Horner’s Rule as explained above.

6. If n is even, return the result from the previous step. Otherwise, returns its negation.

References

[1] W. J. Cody and W. Waite. Software Manual for the Elementary Functions. Prentice-Hall, 1980.

[2] W. Miller. The Engineering of Numerical Software. Prentice-Hall, 1984.

8

