
Newton-Cotes Quadrature Formulas

Chuck Allison
CNS 3320 – Numerical Software Engineering

Utah Valley State College

March 2006

Abstract

This note develops the Newton-Cotes formulas for integrating functions with evenly-spaced
x-values, as well as the error analysis for Simpson’s rule.

Finding areas under curves can be approximated by using interpolating polynomials for portions of
the curve. The formulas for evenly-spaced partitions, known as Newton-Cotes formulas, turn out
to be remarkably simple, and hence lend themselves to efficient automatic computation.

Newton-Cotes Formulas

Consider using horizontal lines (zero-degree polynomials) to approximate sections of the area under
a curve. This leads to the midpoint rule, where the area between xi and xi + h is approximately:

hf(xi +
h

2
)

Using a 1-degree polynomial connecting the points (xi, f(xi)), (xi + h, f(xi + h)) leads to the
Trapezoidal Rule, which uses the following approximation for the area of a panel of width h:

h

2
(f(xi) + f(xi + h))

Another way to find the Trapezoidal Rule is to notice that it is of the form

af(xi) + bf(xi + h)

In other words, it is a linear combination of the y-values f(xi) and f(xi + h). To find the values
of a and b (yes, we already know they’re both h

2 ; keep reading), we can use the fact that the
functions f0(x) = 1 and f1(x) = x match their interpolating polynomial of degree 1 exactly. We
can then use the exact integrals for these functions as values for determining a and b. Noting that
the Trapezoidal Rule is the same no matter what the xi are, we can, without loss of generality,
assume that xi = 0 to obtain the following:

af0(0) + bf0(h) = a · 1 + b · 1 =
∫ h

0
1 · dx = h

af1(0) + bf1(h) = a · 0 + b · h =
∫ h

0
x · dx =

h2

2

1

The solution of this system of equations is a = b = h
2 . So we end up with the Trapezoidal Rule by

solving a system of equations for the weights of a two-point rule.
This formula is for only one panel of course. When adding up the areas of n adjacent trapezoids

on the interval [x0, xn], the composite formula becomes:

h

2
(f(x0) + 2f(x1) + . . . + 2f(xn−1) + f(xn))

because each of the interior f(xi) is used twice.
Simpson’s Rule uses three points, which in effect uses the interpolating polynomial of degree

two between the points as an approximation for the integral of f(x). Proceeding as before, we inte-
grate on the interval [−h, h] three convenient functions that match the second-degree interpolating
polynomial exactly (f0(x) = 1, f1(x) = x, f2(x) = x2), and solve the following system:

af0(−h) + bf0(0) + cf0(h) = a + b + c =
∫ h

−h
1 · dx = 2h

af1(−h) + bf1(0) + cf1(h) = −ha + hc =
∫ h

−h
x · dx = 0

af2(−h) + bf2(0) + cf2(h) = h2a + h2c =
∫ h

−h
x2 · dx =

2
3
h3

This system of equations has solution (a, b, c) = (h
3 , 4h

3 , h
3), so the Newton-Cotes formula for any

three consecutive, evenly-spaced points, x0, x1, x2 (aka Simpson’s Rule), is

h

3
(f(x0) + 4f(x1) + f(x2)).

When we sum up all the interior panels over the range [x0, xn], we get the composite formula

h

3
(f(x0) + 4f(x1) + 2f(x2) + . . . + 2f(xn−2) + 4f(xn−1) + f(xn)).

It just so happens that
∫ h
−h x3dx = 0 (of course; it’s an odd function), and the Simpson’s estimate

for x3 is h
3 (−h3 + 0 + h3) = 0, so the formula is exact for degree 3 also! This always happens

for even-degree interpolating polynomials. That’s why we always use odd-point rules: they use
even-degree interpolating polynomials and get extra accuracy for free! This will be confirmed in
the next section.

Truncation Error

Taylor’s Theorem for f(x) expanded about x0 is

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)2

2
+ f ′′′(x0)

(x− x0)3

3!
+ f (4)(x0)

(x− x0)4

4!
+ . . .

Letting x = x1 in the expansion, and setting h = x1 − x0 we get

f(x1) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +

h3

3!
f ′′′(x0) +

h4

4!
f (4)(x0) + . . .

2

Similarly, letting x = x2 and setting 2h = x2 − x0 we get

f(x2) = f(x0) + 2hf ′(x0) +
(2h)2

2
f ′′(x0) +

(2h)3

3!
f ′′′(x0) +

(2h)4

4!
f (4)(x0) + . . .

In terms of the corresponding Taylor series, the Simpson formula A = h
3 (f(x0) + 4f(x1) + f(x2))

becomes
A =

h

3
(6f(x0) + 6hf ′(x0) + 4h2f ′′(x0) + 2h3f ′′′(x0) +

5
6
h4f (4)(x0) + . . .

= 2hf(x0) + 2h2f ′(x0) +
4
3
h3f ′′(x0) +

2
3
h4f ′′′(x0) +

5
18

h5f (4)(x0) + . . .

We will now determine the expansion for the true value of I =
∫ x2
x0

f(x) and subtract to find an
estimate for the error of the Simpson formula.

Suppose F (x) is the antiderivative of f(x). Then by the Fundamental Theorem of Calculus,
the integral, I, is the difference F (x2)− F (x0). Proceeding as before, we expand F (x2) as

F (x2) = F (x0) + 2hF ′(x0) +
(2h)2

2
F ′′(x0) +

(2h)3

3!
F ′′′(x0) +

(2h)4

4!
F (4)(x0) +

(2h)5

5!
F (5)(x0) + . . .

Recalling that F ′(x) = f(x), we obtain

I = F (x2)− F (x0) = 2hf(x0) +
(2h)2

2
f ′(x0) +

(2h)3

3!
f ′′(x0) +

(2h)4

4!
f ′′′(x0) +

(2h)5

5!
f (4)(x0) + . . .

= 2hf(x0) + 2h2f ′(x0) +
4
3
h3f ′′(x0) +

2
3
h4f ′′′(x0) +

4
15

h5f (4)(x0) + . . .

The truncation error of the Simpson formula is, of course, I − A. Notice how the first four terms
cancel, leaving I −A = − 1

90h5f (4)(x0) + We will just write this as I −A = O(h5). This is the
local truncation error of one Simpson evaluation over an interval of size 2h. To approximate the
global truncation error over the entire interval [a, b], we multiply by n

2 , the number of Simpson’s
evaluations altogether (remember that h = b−a

n):

n

2
O(h5) =

nh

2
O(h4) =

b− a

2
O(h4) = O(h4).

(In general, if n is the degree of the interpolating polynomial approximating f(x) locally, then the
truncation error is O(h2(1+bn

2
c))).

Now let A1 be the value of the Simpson iterate over some interval [a, b], and let A2 be the value
of the Simpson iterate over [a, b] with twice as many panels. In other words, the “h” for A1 is h,
and for A2 it is h

2 . We can compare the respective truncation errors as follows:

E1 = I −A1 = O(h4)

E2 = I −A2 = O((
h

2
)4)

⇒ E1 ≈ 16E2

So doubling the density of the panels decreases the global truncation error by a factor of 16. We
can now solve for I in terms of A1 and A2:

I = A1 + E1 ≈ A1 + 16E2

3

but since I = A2 + E2, we can equate this to A1 + 16E2 to get

⇒ E2 ≈
A2 −A1

15

⇒ I = A2 + E2 ≈ A2 +
A2 −A1

15

We have expressed E2 in terms of A1 and A2, allowing us to use E2 = A2−A1
15 as a correction factor

to improve A2. E2 is our approximation for the absolute error of the automatic integration (i.e.,
we continue until E2 ≤ the given error tolerance—machine epsilon will not be used here, since
the number of computations is so large that roundoff will likely not allow us to get full “machine
accuracy”). If the user has requested an absolute error tolerance of tol for the integral on the
entire interval [a, b], then when integrating over a subset of [a, b], you should use a commensurate
proportion of tol for that subinterval. All of the above suggest the following recursive algorithm:

area(f, a, b, tol) {
compute A1 and A2
if |A2 - A1|/15 <= tol

return A2 + (A2 - A1)/15
else

return area(f, a, (a+b)/2, tol/2) + area(f,(a+b)/2,b,tol/2)
}

Notice that this is an adaptive algorithm. It refines whenever the current interval does not pass
the error test, but only then. If the current refinement is sufficient, we’re done with the current
subinterval. Hence we maximize accuracy and minimize effort.

4

